# Copyright (c) OpenMMLab. All rights reserved. from unittest import TestCase import torch from mmengine import Config from mmengine.structures import InstanceData from mmdet import * # noqa from mmdet.models.dense_heads import RetinaSepBNHead class TestRetinaSepBNHead(TestCase): def test_init(self): """Test init RetinaSepBN head.""" anchor_head = RetinaSepBNHead(num_classes=1, num_ins=1, in_channels=1) anchor_head.init_weights() self.assertTrue(anchor_head.cls_convs) self.assertTrue(anchor_head.reg_convs) self.assertTrue(anchor_head.retina_cls) self.assertTrue(anchor_head.retina_reg) def test_retina_sepbn_head_loss(self): """Tests RetinaSepBN head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'pad_shape': (s, s, 3), 'scale_factor': 1, }] cfg = Config( dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1), sampler=dict(type='PseudoSampler' ), # Focal loss should use PseudoSampler allowed_border=-1, pos_weight=-1, debug=False)) anchor_head = RetinaSepBNHead( num_classes=4, num_ins=5, in_channels=1, train_cfg=cfg) # Anchor head expects a multiple levels of features per image feats = [] for i in range(len(anchor_head.prior_generator.strides)): feats.append( torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))) cls_scores, bbox_preds = anchor_head.forward(tuple(feats)) # Test that empty ground truth encourages the network to # predict background gt_instances = InstanceData() gt_instances.bboxes = torch.empty((0, 4)) gt_instances.labels = torch.LongTensor([]) empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) # When there is no truth, the cls loss should be nonzero but # there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) self.assertGreater(empty_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertEqual( empty_box_loss.item(), 0, 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss # should be nonzero for random inputs gt_instances = InstanceData() gt_instances.bboxes = torch.Tensor( [[23.6667, 23.8757, 238.6326, 151.8874]]) gt_instances.labels = torch.LongTensor([2]) one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances], img_metas) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) self.assertGreater(onegt_cls_loss.item(), 0, 'cls loss should be non-zero') self.assertGreater(onegt_box_loss.item(), 0, 'box loss should be non-zero')