# Copyright (c) OpenMMLab. All rights reserved. import unittest from unittest import TestCase import torch from parameterized import parameterized from mmdet.models.roi_heads import HybridTaskCascadeRoIHead # noqa from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg class TestHTCRoIHead(TestCase): @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_init(self, cfg_file): """Test init htc RoI head.""" # Normal HTC RoI head roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) assert roi_head.with_bbox assert roi_head.with_mask assert roi_head.with_semantic @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_loss(self, cfg_file): """Tests htc roi head loss when truth is empty and non-empty.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) # When truth is non-empty then both cls, box, and mask loss # should be nonzero for random inputs img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, with_semantic=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') # When there is no truth, the cls loss should be nonzero but # there should be no box and mask loss. proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[0], num_classes=4, with_mask=True, with_semantic=True, device='cuda')['data_samples'] out = roi_head.loss(feats, proposal_list, batch_data_samples) for name, value in out.items(): if 'loss_cls' in name: self.assertGreaterEqual( value.sum(), 0, msg='loss should be non-zero') elif 'loss_bbox' in name or 'loss_mask' in name: self.assertEqual(value.sum(), 0) @parameterized.expand(['htc/htc_r50_fpn_1x_coco.py']) def test_htc_roi_head_predict(self, cfg_file): if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, }] roi_head_cfg = get_roi_head_cfg(cfg_file) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() feats = [] for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 256, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) feats = tuple(feats) img_shape_list = [(3, s, s) for _ in img_metas] proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda') batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=[(3, s, s)], num_items=[1], num_classes=4, with_mask=True, device='cuda')['data_samples'] results = roi_head.predict( feats, proposal_list, batch_data_samples, rescale=True) self.assertEqual(results[0].masks.shape[-2:], (s, s))