# Copyright (c) OpenMMLab. All rights reserved. import copy import unittest from unittest import TestCase import torch from mmdet.registry import MODELS from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg from mmdet.utils import register_all_modules class TestTridentRoIHead(TestCase): def setUp(self): register_all_modules() self.roi_head_cfg = get_roi_head_cfg( 'tridentnet/tridentnet_r50-caffe_1x_coco.py') def test_init(self): roi_head = MODELS.build(self.roi_head_cfg) self.assertTrue(roi_head.with_bbox) self.assertTrue(roi_head.with_shared_head) def test_trident_roi_head_predict(self): """Tests trident roi head predict.""" if not torch.cuda.is_available(): # RoI pooling only support in GPU return unittest.skip('test requires GPU and torch+cuda') roi_head_cfg = copy.deepcopy(self.roi_head_cfg) roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() s = 256 feats = [] for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)): feats.append( torch.rand(1, 1024, s // (2**(i + 2)), s // (2**(i + 2))).to(device='cuda')) image_shapes = [(3, s, s)] batch_data_samples = demo_mm_inputs( batch_size=1, image_shapes=image_shapes, num_items=[0], num_classes=4, with_mask=True, device='cuda')['data_samples'] proposals_list = demo_mm_proposals( image_shapes=image_shapes, num_proposals=100, device='cuda') # When `test_branch_idx == 1` roi_head.predict(feats, proposals_list, batch_data_samples) # When `test_branch_idx == -1` roi_head_cfg.test_branch_idx = -1 roi_head = MODELS.build(roi_head_cfg) roi_head = roi_head.cuda() roi_head.predict(feats, proposals_list, batch_data_samples)