12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- _base_ = [
- '../_base_/models/faster-rcnn_r50_fpn.py', '../_base_/default_runtime.py'
- ]
- # model setting
- model = dict(roi_head=dict(bbox_head=dict(num_classes=20)))
- # dsdl dataset settings
- # please visit our platform [OpenDataLab](https://opendatalab.com/)
- # to downloaded dsdl dataset.
- dataset_type = 'DSDLDetDataset'
- data_root = 'data/VOC07-det'
- img_prefix = 'original'
- train_ann = 'dsdl/set-train/train.yaml'
- val_ann = 'dsdl/set-test/test.yaml'
- specific_key_path = dict(ignore_flag='./objects/*/difficult')
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', scale=(1000, 600), keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(1000, 600), keep_ratio=True),
- # avoid bboxes being resized
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'instances'))
- ]
- train_dataloader = dict(
- dataset=dict(
- type=dataset_type,
- specific_key_path=specific_key_path,
- data_root=data_root,
- ann_file=train_ann,
- data_prefix=dict(img_path=img_prefix),
- filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32),
- pipeline=train_pipeline))
- val_dataloader = dict(
- dataset=dict(
- type=dataset_type,
- specific_key_path=specific_key_path,
- data_root=data_root,
- ann_file=val_ann,
- data_prefix=dict(img_path=img_prefix),
- test_mode=True,
- pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL
- # VOC2012 defaults to use 'area'.
- val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points')
- # val_evaluator = dict(type='CocoMetric', metric='bbox')
- test_evaluator = val_evaluator
- # training schedule, voc dataset is repeated 3 times, in
- # `_base_/datasets/voc0712.py`, so the actual epoch = 4 * 3 = 12
- max_epochs = 12
- train_cfg = dict(
- type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=3)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- # learning rate
- param_scheduler = [
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[9],
- gamma=0.1)
- ]
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
- # Default setting for scaling LR automatically
- # - `enable` means enable scaling LR automatically
- # or not by default.
- # - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
- auto_scale_lr = dict(enable=False, base_batch_size=16)
|