Няма описание

Kentaro Wada 176af5ef81 Stop sorting to avoid unexpected behavior преди 7 години
appveyor a528c44147 Add appveyor requirements преди 7 години
docker 798e9b9cab Update dockerfile преди 8 години
labelme 176af5ef81 Stop sorting to avoid unexpected behavior преди 7 години
scripts db3f97665d Draw original image in labelme_draw_json преди 7 години
static 8c2bedb232 Use concrete name in json преди 7 години
tests b00506f760 _static -> static преди 7 години
.gitignore 9ba752183c Prepare source to release pypi преди 9 години
.travis.yml e9d7e6290a Fail to use brew on Travis преди 7 години
LICENSE e0f2d45054 Rename COPYING -> LICENSE преди 9 години
MANIFEST.in 9962d0adbf rst to md преди 9 години
README.md 30393ebf71 Update README.md преди 7 години
appveyor.yml 24659cf717 Only test for x64 преди 7 години
setup.cfg c45f650b12 Remove dependency on scikit-image преди 7 години
setup.py 0421c5f912 2.6.4 преди 7 години

README.md

labelme: Image Annotation Tool with Python

PyPI Version Travis Build Status Appveyor Build status Docker Build Status

Labelme is a graphical image annotation tool inspired by http://labelme.csail.mit.edu.
It is written in Python and uses Qt for its graphical interface.

Requirements

Installation

There are options:

  • Platform agonistic installation: Anaconda, Docker
  • Platform specific installation: Ubuntu, macOS

Anaconda

You need install Anaconda, then run below:

conda create --name=labelme python=2.7
source activate labelme
conda install pyqt
pip install labelme

Docker

You need install docker, then run below:

wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/labelme_on_docker
chmod u+x labelme_on_docker

# Maybe you need http://sourabhbajaj.com/blog/2017/02/07/gui-applications-docker-mac/ on macOS
./labelme_on_docker static/apc2016_obj3.jpg -O static/apc2016_obj3.json

Ubuntu

sudo apt-get install python-qt4 pyqt4-dev-tools
sudo pip install labelme

macOS

brew install qt qt4 || brew install pyqt  # qt4 is deprecated
pip install labelme

Usage

Annotation

Run labelme --help for detail.

labelme  # Open GUI
labelme static/apc2016_obj3.jpg  # Specify file
labelme static/apc2016_obj3.jpg -O static/apc2016_obj3.json  # Close window after the save

The annotations are saved as a JSON file. The file includes the image itself.

Visualization

To view the json file quickly, you can use utility script:

labelme_draw_json static/apc2016_obj3.json

Convert to Dataset

To convert the json to set of image and label, you can run following:

labelme_json_to_dataset static/apc2016_obj3.json

Sample

Screencast

Acknowledgement

This repo is the fork of mpitid/pylabelme, whose development has already stopped.