Kentaro Wada 5c9808446a Format code with black 4 gadi atpakaļ
..
.readme 03d7d365ce Update README images 5 gadi atpakaļ
data_annotated 61f5fee418 Remove lineColor and shapeColor keys from example JSON files 5 gadi atpakaļ
data_dataset_coco 8683269fef Update examples/instance_segmentation 5 gadi atpakaļ
data_dataset_voc 8683269fef Update examples/instance_segmentation 5 gadi atpakaļ
README.md 8b5b4ea410 Use visible colors as default for auto_shape_color 5 gadi atpakaļ
labelme2coco.py 5c9808446a Format code with black 4 gadi atpakaļ
labelme2voc.py 5c9808446a Format code with black 4 gadi atpakaļ
labels.txt 4f2e652483 Add examples/instance_segmentation 7 gadi atpakaļ

README.md

Instance Segmentation Example

Annotation

labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}'
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person-\d+: [male]}'

Convert to VOC-format Dataset

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt


Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)

Note that the label file contains only very low label values (ex. 0, 4, 14), and 255 indicates the __ignore__ label value (-1 in the npy file).
You can see the label PNG file by following.

labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right

Convert to COCO-format Dataset

# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt