Kentaro Wada 5c9808446a Format code with black 4 rokov pred
..
.readme 03d7d365ce Update README images 5 rokov pred
data_annotated 61f5fee418 Remove lineColor and shapeColor keys from example JSON files 5 rokov pred
data_dataset_coco 8683269fef Update examples/instance_segmentation 5 rokov pred
data_dataset_voc 8683269fef Update examples/instance_segmentation 5 rokov pred
README.md 8b5b4ea410 Use visible colors as default for auto_shape_color 5 rokov pred
labelme2coco.py 5c9808446a Format code with black 4 rokov pred
labelme2voc.py 5c9808446a Format code with black 4 rokov pred
labels.txt 4f2e652483 Add examples/instance_segmentation 7 rokov pred

README.md

Instance Segmentation Example

Annotation

labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config '{shift_auto_shape_color: -2}'
labelme data_annotated --labels labels.txt --nodata --labelflags '{.*: [occluded, truncated], person-\d+: [male]}'

Convert to VOC-format Dataset

# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/SegmentationClass
#   - data_dataset_voc/SegmentationClassVisualization
#   - data_dataset_voc/SegmentationObject
#   - data_dataset_voc/SegmentationObjectVisualization
./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt


Fig 1. JPEG image (left), JPEG class label visualization (center), JPEG instance label visualization (right)

Note that the label file contains only very low label values (ex. 0, 4, 14), and 255 indicates the __ignore__ label value (-1 in the npy file).
You can see the label PNG file by following.

labelme_draw_label_png data_dataset_voc/SegmentationClassPNG/2011_000003.png   # left
labelme_draw_label_png data_dataset_voc/SegmentationObjectPNG/2011_000003.png  # right

Convert to COCO-format Dataset

# It generates:
#   - data_dataset_coco/JPEGImages
#   - data_dataset_coco/annotations.json
./labelme2coco.py data_annotated data_dataset_coco --labels labels.txt