barcode detection

Tricolops 3a73e65767 another change 10 months ago
.circleci faeba8359f modified mmdetection 10 months ago
.dev_scripts faeba8359f modified mmdetection 10 months ago
.github faeba8359f modified mmdetection 10 months ago
configs faeba8359f modified mmdetection 10 months ago
demo faeba8359f modified mmdetection 10 months ago
docker faeba8359f modified mmdetection 10 months ago
docs faeba8359f modified mmdetection 10 months ago
mmdet faeba8359f modified mmdetection 10 months ago
projects faeba8359f modified mmdetection 10 months ago
requirements faeba8359f modified mmdetection 10 months ago
resources faeba8359f modified mmdetection 10 months ago
tests faeba8359f modified mmdetection 10 months ago
tools faeba8359f modified mmdetection 10 months ago
.gitignore 3a73e65767 another change 10 months ago
.owners.yml faeba8359f modified mmdetection 10 months ago
.pre-commit-config-zh-cn.yaml faeba8359f modified mmdetection 10 months ago
.pre-commit-config.yaml faeba8359f modified mmdetection 10 months ago
.readthedocs.yml faeba8359f modified mmdetection 10 months ago
20240531_164900.json faeba8359f modified mmdetection 10 months ago
CITATION.cff faeba8359f modified mmdetection 10 months ago
LICENSE faeba8359f modified mmdetection 10 months ago
MANIFEST.in faeba8359f modified mmdetection 10 months ago
README.md 60b83620ed first commit 10 months ago
README_zh-CN.md faeba8359f modified mmdetection 10 months ago
config.py faeba8359f modified mmdetection 10 months ago
config_rtdetrwithrepvgg.py faeba8359f modified mmdetection 10 months ago
config_rtdetrwithyolo.py faeba8359f modified mmdetection 10 months ago
config_rtmdet.py faeba8359f modified mmdetection 10 months ago
convert_to_rgb.py faeba8359f modified mmdetection 10 months ago
dataset-index.yml faeba8359f modified mmdetection 10 months ago
model-index.yml faeba8359f modified mmdetection 10 months ago
pytest.ini faeba8359f modified mmdetection 10 months ago
requirements.txt faeba8359f modified mmdetection 10 months ago
setup.cfg faeba8359f modified mmdetection 10 months ago
setup.py faeba8359f modified mmdetection 10 months ago

README.md

English | [简体中文](README_zh-CN.md)

Introduction

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

The main branch works with PyTorch 1.8+.

Major features - **Modular Design** We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules. - **Support of multiple tasks out of box** The toolbox directly supports multiple detection tasks such as **object detection**, **instance segmentation**, **panoptic segmentation**, and **semi-supervised object detection**. - **High efficiency** All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including [Detectron2](https://github.com/facebookresearch/detectron2), [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark) and [SimpleDet](https://github.com/TuSimple/simpledet). - **State of the art** The toolbox stems from the codebase developed by the *MMDet* team, who won [COCO Detection Challenge](http://cocodataset.org/#detection-leaderboard) in 2018, and we keep pushing it forward. The newly released [RTMDet](configs/rtmdet) also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.

Apart from MMDetection, we also released MMEngine for model training and MMCV for computer vision research, which are heavily depended on by this toolbox.

What's New

Highlight

We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.

PWC PWC PWC

Task Dataset AP FPS(TRT FP16 BS1 3090)
Object Detection COCO 52.8 322
Instance Segmentation COCO 44.6 188
Rotated Object Detection DOTA 78.9(single-scale)/81.3(multi-scale) 121

v3.1.0 was released in 30/6/2023:

  • Supports tracking algorithms including multi-object tracking (MOT) algorithms SORT, DeepSORT, StrongSORT, OCSORT, ByteTrack, QDTrack, and video instance segmentation (VIS) algorithm MaskTrackRCNN, Mask2Former-VIS.
  • Support ViTDet
  • Supports inference and evaluation of multimodal algorithms GLIP and XDecoder, and also supports datasets such as COCO semantic segmentation, COCO Caption, ADE20k general segmentation, and RefCOCO. GLIP fine-tuning will be supported in the future.
  • Provides a gradio demo for image type tasks of MMDetection, making it easy for users to experience.

Installation

Please refer to Installation for installation instructions.

Getting Started

Please see Overview for the general introduction of MMDetection.

For detailed user guides and advanced guides, please refer to our documentation:

  • User Guides

  • Advanced Guides

We also provide object detection colab tutorial Open in Colab and instance segmentation colab tutorial Open in Colab.

To migrate from MMDetection 2.x, please refer to migration.

Overview of Benchmark and Model Zoo

Results and models are available in the model zoo.

Architectures
<tr align="center" valign="bottom">
  <td>
    <b>Object Detection</b>
  </td>
  <td>
    <b>Instance Segmentation</b>
  </td>
  <td>
    <b>Panoptic Segmentation</b>
  </td>
  <td>
    <b>Other</b>
  </td>
</tr>
<tr valign="top">
  <td>
    <ul>
        <li><a href="configs/fast_rcnn">Fast R-CNN (ICCV'2015)</a></li>
        <li><a href="configs/faster_rcnn">Faster R-CNN (NeurIPS'2015)</a></li>
        <li><a href="configs/rpn">RPN (NeurIPS'2015)</a></li>
        <li><a href="configs/ssd">SSD (ECCV'2016)</a></li>
        <li><a href="configs/retinanet">RetinaNet (ICCV'2017)</a></li>
        <li><a href="configs/cascade_rcnn">Cascade R-CNN (CVPR'2018)</a></li>
        <li><a href="configs/yolo">YOLOv3 (ArXiv'2018)</a></li>
        <li><a href="configs/cornernet">CornerNet (ECCV'2018)</a></li>
        <li><a href="configs/grid_rcnn">Grid R-CNN (CVPR'2019)</a></li>
        <li><a href="configs/guided_anchoring">Guided Anchoring (CVPR'2019)</a></li>
        <li><a href="configs/fsaf">FSAF (CVPR'2019)</a></li>
        <li><a href="configs/centernet">CenterNet (CVPR'2019)</a></li>
        <li><a href="configs/libra_rcnn">Libra R-CNN (CVPR'2019)</a></li>
        <li><a href="configs/tridentnet">TridentNet (ICCV'2019)</a></li>
        <li><a href="configs/fcos">FCOS (ICCV'2019)</a></li>
        <li><a href="configs/reppoints">RepPoints (ICCV'2019)</a></li>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
        <li><a href="configs/cascade_rpn">CascadeRPN (NeurIPS'2019)</a></li>
        <li><a href="configs/foveabox">Foveabox (TIP'2020)</a></li>
        <li><a href="configs/double_heads">Double-Head R-CNN (CVPR'2020)</a></li>
        <li><a href="configs/atss">ATSS (CVPR'2020)</a></li>
        <li><a href="configs/nas_fcos">NAS-FCOS (CVPR'2020)</a></li>
        <li><a href="configs/centripetalnet">CentripetalNet (CVPR'2020)</a></li>
        <li><a href="configs/autoassign">AutoAssign (ArXiv'2020)</a></li>
        <li><a href="configs/sabl">Side-Aware Boundary Localization (ECCV'2020)</a></li>
        <li><a href="configs/dynamic_rcnn">Dynamic R-CNN (ECCV'2020)</a></li>
        <li><a href="configs/detr">DETR (ECCV'2020)</a></li>
        <li><a href="configs/paa">PAA (ECCV'2020)</a></li>
        <li><a href="configs/vfnet">VarifocalNet (CVPR'2021)</a></li>
        <li><a href="configs/sparse_rcnn">Sparse R-CNN (CVPR'2021)</a></li>
        <li><a href="configs/yolof">YOLOF (CVPR'2021)</a></li>
        <li><a href="configs/yolox">YOLOX (CVPR'2021)</a></li>
        <li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
        <li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
        <li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
        <li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li>
        <li><a href="configs/conditional_detr">Conditional DETR (ICCV'2021)</a></li>
        <li><a href="configs/dab_detr">DAB-DETR (ICLR'2022)</a></li>
        <li><a href="configs/dino">DINO (ICLR'2023)</a></li>
        <li><a href="configs/glip">GLIP (CVPR'2022)</a></li>
        <li><a href="projects/DiffusionDet">DiffusionDet (ArXiv'2023)</a></li>
        <li><a href="projects/EfficientDet">EfficientDet (CVPR'2020)</a></li>
        <li><a href="projects/Detic">Detic (ECCV'2022)</a></li>
  </ul>
  </td>
  <td>
    <ul>
      <li><a href="configs/mask_rcnn">Mask R-CNN (ICCV'2017)</a></li>
      <li><a href="configs/cascade_rcnn">Cascade Mask R-CNN (CVPR'2018)</a></li>
      <li><a href="configs/ms_rcnn">Mask Scoring R-CNN (CVPR'2019)</a></li>
      <li><a href="configs/htc">Hybrid Task Cascade (CVPR'2019)</a></li>
      <li><a href="configs/yolact">YOLACT (ICCV'2019)</a></li>
      <li><a href="configs/instaboost">InstaBoost (ICCV'2019)</a></li>
      <li><a href="configs/solo">SOLO (ECCV'2020)</a></li>
      <li><a href="configs/point_rend">PointRend (CVPR'2020)</a></li>
      <li><a href="configs/detectors">DetectoRS (ArXiv'2020)</a></li>
      <li><a href="configs/solov2">SOLOv2 (NeurIPS'2020)</a></li>
      <li><a href="configs/scnet">SCNet (AAAI'2021)</a></li>
      <li><a href="configs/queryinst">QueryInst (ICCV'2021)</a></li>
      <li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
      <li><a href="configs/condinst">CondInst (ECCV'2020)</a></li>
      <li><a href="projects/SparseInst">SparseInst (CVPR'2022)</a></li>
      <li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li>
      <li><a href="configs/boxinst">BoxInst (CVPR'2021)</a></li>
    </ul>
  </td>
  <td>
    <ul>
      <li><a href="configs/panoptic_fpn">Panoptic FPN (CVPR'2019)</a></li>
      <li><a href="configs/maskformer">MaskFormer (NeurIPS'2021)</a></li>
      <li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
    </ul>
  </td>
  <td>
    </ul>
      <li><b>Contrastive Learning</b></li>
    <ul>
    <ul>
      <li><a href="configs/selfsup_pretrain">SwAV (NeurIPS'2020)</a></li>
      <li><a href="configs/selfsup_pretrain">MoCo (CVPR'2020)</a></li>
      <li><a href="configs/selfsup_pretrain">MoCov2 (ArXiv'2020)</a></li>
    </ul>
    </ul>
    </ul>
      <li><b>Distillation</b></li>
    <ul>
    <ul>
      <li><a href="configs/ld">Localization Distillation (CVPR'2022)</a></li>
      <li><a href="configs/lad">Label Assignment Distillation (WACV'2022)</a></li>
    </ul>
    </ul>
      <li><b>Semi-Supervised Object Detection</b></li>
    <ul>
    <ul>
      <li><a href="configs/soft_teacher">Soft Teacher (ICCV'2021)</a></li>
    </ul>
    </ul>
  </ul>
  </td>
</tr>

</tr>

Components
<tr align="center" valign="bottom">
  <td>
    <b>Backbones</b>
  </td>
  <td>
    <b>Necks</b>
  </td>
  <td>
    <b>Loss</b>
  </td>
  <td>
    <b>Common</b>
  </td>
</tr>
<tr valign="top">
  <td>
  <ul>
    <li>VGG (ICLR'2015)</li>
    <li>ResNet (CVPR'2016)</li>
    <li>ResNeXt (CVPR'2017)</li>
    <li>MobileNetV2 (CVPR'2018)</li>
    <li><a href="configs/hrnet">HRNet (CVPR'2019)</a></li>
    <li><a href="configs/empirical_attention">Generalized Attention (ICCV'2019)</a></li>
    <li><a href="configs/gcnet">GCNet (ICCVW'2019)</a></li>
    <li><a href="configs/res2net">Res2Net (TPAMI'2020)</a></li>
    <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
    <li><a href="configs/resnest">ResNeSt (ArXiv'2020)</a></li>
    <li><a href="configs/pvt">PVT (ICCV'2021)</a></li>
    <li><a href="configs/swin">Swin (CVPR'2021)</a></li>
    <li><a href="configs/pvt">PVTv2 (ArXiv'2021)</a></li>
    <li><a href="configs/resnet_strikes_back">ResNet strikes back (ArXiv'2021)</a></li>
    <li><a href="configs/efficientnet">EfficientNet (ArXiv'2021)</a></li>
    <li><a href="configs/convnext">ConvNeXt (CVPR'2022)</a></li>
    <li><a href="projects/ConvNeXt-V2">ConvNeXtv2 (ArXiv'2023)</a></li>
  </ul>
  </td>
  <td>
  <ul>
    <li><a href="configs/pafpn">PAFPN (CVPR'2018)</a></li>
    <li><a href="configs/nas_fpn">NAS-FPN (CVPR'2019)</a></li>
    <li><a href="configs/carafe">CARAFE (ICCV'2019)</a></li>
    <li><a href="configs/fpg">FPG (ArXiv'2020)</a></li>
    <li><a href="configs/groie">GRoIE (ICPR'2020)</a></li>
    <li><a href="configs/dyhead">DyHead (CVPR'2021)</a></li>
  </ul>
  </td>
  <td>
    <ul>
      <li><a href="configs/ghm">GHM (AAAI'2019)</a></li>
      <li><a href="configs/gfl">Generalized Focal Loss (NeurIPS'2020)</a></li>
      <li><a href="configs/seesaw_loss">Seasaw Loss (CVPR'2021)</a></li>
    </ul>
  </td>
  <td>
    <ul>
      <li><a href="configs/faster_rcnn/faster-rcnn_r50_fpn_ohem_1x_coco.py">OHEM (CVPR'2016)</a></li>
      <li><a href="configs/gn">Group Normalization (ECCV'2018)</a></li>
      <li><a href="configs/dcn">DCN (ICCV'2017)</a></li>
      <li><a href="configs/dcnv2">DCNv2 (CVPR'2019)</a></li>
      <li><a href="configs/gn+ws">Weight Standardization (ArXiv'2019)</a></li>
      <li><a href="configs/pisa">Prime Sample Attention (CVPR'2020)</a></li>
      <li><a href="configs/strong_baselines">Strong Baselines (CVPR'2021)</a></li>
      <li><a href="configs/resnet_strikes_back">Resnet strikes back (ArXiv'2021)</a></li>
    </ul>
  </td>
</tr>

</tr>

Some other methods are also supported in projects using MMDetection.

FAQ

Please refer to FAQ for frequently asked questions.

Contributing

We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.

Acknowledgement

MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}

License

This project is released under the Apache 2.0 license.

Projects in OpenMMLab

  • MMEngine: OpenMMLab foundational library for training deep learning models.
  • MMCV: OpenMMLab foundational library for computer vision.
  • MMPreTrain: OpenMMLab pre-training toolbox and benchmark.
  • MMagic: OpenMMLab Advanced, Generative and Intelligent Creation toolbox.
  • MMDetection: OpenMMLab detection toolbox and benchmark.
  • MMDetection3D: OpenMMLab's next-generation platform for general 3D object detection.
  • MMRotate: OpenMMLab rotated object detection toolbox and benchmark.
  • MMYOLO: OpenMMLab YOLO series toolbox and benchmark.
  • MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark.
  • MMOCR: OpenMMLab text detection, recognition, and understanding toolbox.
  • MMPose: OpenMMLab pose estimation toolbox and benchmark.
  • MMHuman3D: OpenMMLab 3D human parametric model toolbox and benchmark.
  • MMSelfSup: OpenMMLab self-supervised learning toolbox and benchmark.
  • MMRazor: OpenMMLab model compression toolbox and benchmark.
  • MMFewShot: OpenMMLab fewshot learning toolbox and benchmark.
  • MMAction2: OpenMMLab's next-generation action understanding toolbox and benchmark.
  • MMTracking: OpenMMLab video perception toolbox and benchmark.
  • MMFlow: OpenMMLab optical flow toolbox and benchmark.
  • MMEditing: OpenMMLab image and video editing toolbox.
  • MMGeneration: OpenMMLab image and video generative models toolbox.
  • MMDeploy: OpenMMLab model deployment framework.
  • MIM: MIM installs OpenMMLab packages.
  • MMEval: A unified evaluation library for multiple machine learning libraries.
  • Playground: A central hub for gathering and showcasing amazing projects built upon OpenMMLab.