123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- _base_ = ['../yolox/yolox_x_8xb8-300e_coco.py']
- dataset_type = 'MOTChallengeDataset'
- data_root = 'data/MOT17/'
- img_scale = (1440, 800) # weight, height
- batch_size = 4
- detector = _base_.model
- detector.pop('data_preprocessor')
- detector.bbox_head.update(dict(num_classes=1))
- detector.test_cfg.nms.update(dict(iou_threshold=0.7))
- detector['init_cfg'] = dict(
- type='Pretrained',
- checkpoint= # noqa: E251
- 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth' # noqa: E501
- )
- del _base_.model
- model = dict(
- type='ByteTrack',
- data_preprocessor=dict(
- type='TrackDataPreprocessor',
- pad_size_divisor=32,
- # in bytetrack, we provide joint train detector and evaluate tracking
- # performance, use_det_processor means use independent detector
- # data_preprocessor. of course, you can train detector independently
- # like strongsort
- use_det_processor=True,
- batch_augments=[
- dict(
- type='BatchSyncRandomResize',
- random_size_range=(576, 1024),
- size_divisor=32,
- interval=10)
- ]),
- detector=detector,
- tracker=dict(
- type='ByteTracker',
- motion=dict(type='KalmanFilter'),
- obj_score_thrs=dict(high=0.6, low=0.1),
- init_track_thr=0.7,
- weight_iou_with_det_scores=True,
- match_iou_thrs=dict(high=0.1, low=0.5, tentative=0.3),
- num_frames_retain=30))
- train_pipeline = [
- dict(
- type='Mosaic',
- img_scale=img_scale,
- pad_val=114.0,
- bbox_clip_border=False),
- dict(
- type='RandomAffine',
- scaling_ratio_range=(0.1, 2),
- border=(-img_scale[0] // 2, -img_scale[1] // 2),
- bbox_clip_border=False),
- dict(
- type='MixUp',
- img_scale=img_scale,
- ratio_range=(0.8, 1.6),
- pad_val=114.0,
- bbox_clip_border=False),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='Resize',
- scale=img_scale,
- keep_ratio=True,
- clip_object_border=False),
- dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(
- type='TransformBroadcaster',
- transforms=[
- dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
- dict(type='Resize', scale=img_scale, keep_ratio=True),
- dict(
- type='Pad',
- size_divisor=32,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadTrackAnnotations'),
- ]),
- dict(type='PackTrackInputs')
- ]
- train_dataloader = dict(
- _delete_=True,
- batch_size=batch_size,
- num_workers=4,
- persistent_workers=True,
- pin_memory=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- dataset=dict(
- type='MultiImageMixDataset',
- dataset=dict(
- type='ConcatDataset',
- datasets=[
- dict(
- type='CocoDataset',
- data_root='data/MOT17',
- ann_file='annotations/half-train_cocoformat.json',
- data_prefix=dict(img='train'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- metainfo=dict(classes=('pedestrian', )),
- pipeline=[
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- ]),
- dict(
- type='CocoDataset',
- data_root='data/crowdhuman',
- ann_file='annotations/crowdhuman_train.json',
- data_prefix=dict(img='train'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- metainfo=dict(classes=('pedestrian', )),
- pipeline=[
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- ]),
- dict(
- type='CocoDataset',
- data_root='data/crowdhuman',
- ann_file='annotations/crowdhuman_val.json',
- data_prefix=dict(img='val'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- metainfo=dict(classes=('pedestrian', )),
- pipeline=[
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- ]),
- ]),
- pipeline=train_pipeline))
- val_dataloader = dict(
- _delete_=True,
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- pin_memory=True,
- drop_last=False,
- # video_based
- # sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
- sampler=dict(type='TrackImgSampler'), # image_based
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/half-val_cocoformat.json',
- data_prefix=dict(img_path='train'),
- test_mode=True,
- pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # optimizer
- # default 8 gpu
- base_lr = 0.001 / 8 * batch_size
- optim_wrapper = dict(optimizer=dict(lr=base_lr))
- # some hyper parameters
- # training settings
- max_epochs = 80
- num_last_epochs = 10
- interval = 5
- train_cfg = dict(
- type='EpochBasedTrainLoop',
- max_epochs=max_epochs,
- val_begin=70,
- val_interval=1)
- # learning policy
- param_scheduler = [
- dict(
- # use quadratic formula to warm up 1 epochs
- type='QuadraticWarmupLR',
- by_epoch=True,
- begin=0,
- end=1,
- convert_to_iter_based=True),
- dict(
- # use cosine lr from 1 to 70 epoch
- type='CosineAnnealingLR',
- eta_min=base_lr * 0.05,
- begin=1,
- T_max=max_epochs - num_last_epochs,
- end=max_epochs - num_last_epochs,
- by_epoch=True,
- convert_to_iter_based=True),
- dict(
- # use fixed lr during last 10 epochs
- type='ConstantLR',
- by_epoch=True,
- factor=1,
- begin=max_epochs - num_last_epochs,
- end=max_epochs,
- )
- ]
- custom_hooks = [
- dict(
- type='YOLOXModeSwitchHook',
- num_last_epochs=num_last_epochs,
- priority=48),
- dict(type='SyncNormHook', priority=48),
- dict(
- type='EMAHook',
- ema_type='ExpMomentumEMA',
- momentum=0.0001,
- update_buffers=True,
- priority=49)
- ]
- default_hooks = dict(
- checkpoint=dict(
- _delete_=True, type='CheckpointHook', interval=1, max_keep_ckpts=10),
- visualization=dict(type='TrackVisualizationHook', draw=False))
- vis_backends = [dict(type='LocalVisBackend')]
- visualizer = dict(
- type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer')
- # evaluator
- val_evaluator = dict(
- _delete_=True,
- type='MOTChallengeMetric',
- metric=['HOTA', 'CLEAR', 'Identity'],
- postprocess_tracklet_cfg=[
- dict(type='InterpolateTracklets', min_num_frames=5, max_num_frames=20)
- ])
- test_evaluator = val_evaluator
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (4 samples per GPU)
- auto_scale_lr = dict(base_batch_size=32)
- del detector
- del _base_.tta_model
- del _base_.tta_pipeline
- del _base_.train_dataset
|