bytetrack_yolox_x_8xb4-80e_crowdhuman-mot17halftrain_test-mot17halfval.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. _base_ = ['../yolox/yolox_x_8xb8-300e_coco.py']
  2. dataset_type = 'MOTChallengeDataset'
  3. data_root = 'data/MOT17/'
  4. img_scale = (1440, 800) # weight, height
  5. batch_size = 4
  6. detector = _base_.model
  7. detector.pop('data_preprocessor')
  8. detector.bbox_head.update(dict(num_classes=1))
  9. detector.test_cfg.nms.update(dict(iou_threshold=0.7))
  10. detector['init_cfg'] = dict(
  11. type='Pretrained',
  12. checkpoint= # noqa: E251
  13. 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth' # noqa: E501
  14. )
  15. del _base_.model
  16. model = dict(
  17. type='ByteTrack',
  18. data_preprocessor=dict(
  19. type='TrackDataPreprocessor',
  20. pad_size_divisor=32,
  21. # in bytetrack, we provide joint train detector and evaluate tracking
  22. # performance, use_det_processor means use independent detector
  23. # data_preprocessor. of course, you can train detector independently
  24. # like strongsort
  25. use_det_processor=True,
  26. batch_augments=[
  27. dict(
  28. type='BatchSyncRandomResize',
  29. random_size_range=(576, 1024),
  30. size_divisor=32,
  31. interval=10)
  32. ]),
  33. detector=detector,
  34. tracker=dict(
  35. type='ByteTracker',
  36. motion=dict(type='KalmanFilter'),
  37. obj_score_thrs=dict(high=0.6, low=0.1),
  38. init_track_thr=0.7,
  39. weight_iou_with_det_scores=True,
  40. match_iou_thrs=dict(high=0.1, low=0.5, tentative=0.3),
  41. num_frames_retain=30))
  42. train_pipeline = [
  43. dict(
  44. type='Mosaic',
  45. img_scale=img_scale,
  46. pad_val=114.0,
  47. bbox_clip_border=False),
  48. dict(
  49. type='RandomAffine',
  50. scaling_ratio_range=(0.1, 2),
  51. border=(-img_scale[0] // 2, -img_scale[1] // 2),
  52. bbox_clip_border=False),
  53. dict(
  54. type='MixUp',
  55. img_scale=img_scale,
  56. ratio_range=(0.8, 1.6),
  57. pad_val=114.0,
  58. bbox_clip_border=False),
  59. dict(type='YOLOXHSVRandomAug'),
  60. dict(type='RandomFlip', prob=0.5),
  61. dict(
  62. type='Resize',
  63. scale=img_scale,
  64. keep_ratio=True,
  65. clip_object_border=False),
  66. dict(type='Pad', size_divisor=32, pad_val=dict(img=(114.0, 114.0, 114.0))),
  67. dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
  68. dict(type='PackDetInputs')
  69. ]
  70. test_pipeline = [
  71. dict(
  72. type='TransformBroadcaster',
  73. transforms=[
  74. dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
  75. dict(type='Resize', scale=img_scale, keep_ratio=True),
  76. dict(
  77. type='Pad',
  78. size_divisor=32,
  79. pad_val=dict(img=(114.0, 114.0, 114.0))),
  80. dict(type='LoadTrackAnnotations'),
  81. ]),
  82. dict(type='PackTrackInputs')
  83. ]
  84. train_dataloader = dict(
  85. _delete_=True,
  86. batch_size=batch_size,
  87. num_workers=4,
  88. persistent_workers=True,
  89. pin_memory=True,
  90. sampler=dict(type='DefaultSampler', shuffle=True),
  91. dataset=dict(
  92. type='MultiImageMixDataset',
  93. dataset=dict(
  94. type='ConcatDataset',
  95. datasets=[
  96. dict(
  97. type='CocoDataset',
  98. data_root='data/MOT17',
  99. ann_file='annotations/half-train_cocoformat.json',
  100. data_prefix=dict(img='train'),
  101. filter_cfg=dict(filter_empty_gt=True, min_size=32),
  102. metainfo=dict(classes=('pedestrian', )),
  103. pipeline=[
  104. dict(
  105. type='LoadImageFromFile',
  106. backend_args=_base_.backend_args),
  107. dict(type='LoadAnnotations', with_bbox=True),
  108. ]),
  109. dict(
  110. type='CocoDataset',
  111. data_root='data/crowdhuman',
  112. ann_file='annotations/crowdhuman_train.json',
  113. data_prefix=dict(img='train'),
  114. filter_cfg=dict(filter_empty_gt=True, min_size=32),
  115. metainfo=dict(classes=('pedestrian', )),
  116. pipeline=[
  117. dict(
  118. type='LoadImageFromFile',
  119. backend_args=_base_.backend_args),
  120. dict(type='LoadAnnotations', with_bbox=True),
  121. ]),
  122. dict(
  123. type='CocoDataset',
  124. data_root='data/crowdhuman',
  125. ann_file='annotations/crowdhuman_val.json',
  126. data_prefix=dict(img='val'),
  127. filter_cfg=dict(filter_empty_gt=True, min_size=32),
  128. metainfo=dict(classes=('pedestrian', )),
  129. pipeline=[
  130. dict(
  131. type='LoadImageFromFile',
  132. backend_args=_base_.backend_args),
  133. dict(type='LoadAnnotations', with_bbox=True),
  134. ]),
  135. ]),
  136. pipeline=train_pipeline))
  137. val_dataloader = dict(
  138. _delete_=True,
  139. batch_size=1,
  140. num_workers=2,
  141. persistent_workers=True,
  142. pin_memory=True,
  143. drop_last=False,
  144. # video_based
  145. # sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
  146. sampler=dict(type='TrackImgSampler'), # image_based
  147. dataset=dict(
  148. type=dataset_type,
  149. data_root=data_root,
  150. ann_file='annotations/half-val_cocoformat.json',
  151. data_prefix=dict(img_path='train'),
  152. test_mode=True,
  153. pipeline=test_pipeline))
  154. test_dataloader = val_dataloader
  155. # optimizer
  156. # default 8 gpu
  157. base_lr = 0.001 / 8 * batch_size
  158. optim_wrapper = dict(optimizer=dict(lr=base_lr))
  159. # some hyper parameters
  160. # training settings
  161. max_epochs = 80
  162. num_last_epochs = 10
  163. interval = 5
  164. train_cfg = dict(
  165. type='EpochBasedTrainLoop',
  166. max_epochs=max_epochs,
  167. val_begin=70,
  168. val_interval=1)
  169. # learning policy
  170. param_scheduler = [
  171. dict(
  172. # use quadratic formula to warm up 1 epochs
  173. type='QuadraticWarmupLR',
  174. by_epoch=True,
  175. begin=0,
  176. end=1,
  177. convert_to_iter_based=True),
  178. dict(
  179. # use cosine lr from 1 to 70 epoch
  180. type='CosineAnnealingLR',
  181. eta_min=base_lr * 0.05,
  182. begin=1,
  183. T_max=max_epochs - num_last_epochs,
  184. end=max_epochs - num_last_epochs,
  185. by_epoch=True,
  186. convert_to_iter_based=True),
  187. dict(
  188. # use fixed lr during last 10 epochs
  189. type='ConstantLR',
  190. by_epoch=True,
  191. factor=1,
  192. begin=max_epochs - num_last_epochs,
  193. end=max_epochs,
  194. )
  195. ]
  196. custom_hooks = [
  197. dict(
  198. type='YOLOXModeSwitchHook',
  199. num_last_epochs=num_last_epochs,
  200. priority=48),
  201. dict(type='SyncNormHook', priority=48),
  202. dict(
  203. type='EMAHook',
  204. ema_type='ExpMomentumEMA',
  205. momentum=0.0001,
  206. update_buffers=True,
  207. priority=49)
  208. ]
  209. default_hooks = dict(
  210. checkpoint=dict(
  211. _delete_=True, type='CheckpointHook', interval=1, max_keep_ckpts=10),
  212. visualization=dict(type='TrackVisualizationHook', draw=False))
  213. vis_backends = [dict(type='LocalVisBackend')]
  214. visualizer = dict(
  215. type='TrackLocalVisualizer', vis_backends=vis_backends, name='visualizer')
  216. # evaluator
  217. val_evaluator = dict(
  218. _delete_=True,
  219. type='MOTChallengeMetric',
  220. metric=['HOTA', 'CLEAR', 'Identity'],
  221. postprocess_tracklet_cfg=[
  222. dict(type='InterpolateTracklets', min_num_frames=5, max_num_frames=20)
  223. ])
  224. test_evaluator = val_evaluator
  225. # NOTE: `auto_scale_lr` is for automatically scaling LR,
  226. # USER SHOULD NOT CHANGE ITS VALUES.
  227. # base_batch_size = (8 GPUs) x (4 samples per GPU)
  228. auto_scale_lr = dict(base_batch_size=32)
  229. del detector
  230. del _base_.tta_model
  231. del _base_.tta_pipeline
  232. del _base_.train_dataset