cornernet_hourglass104_8xb6-210e-mstest_coco.py 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183
  1. _base_ = [
  2. '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
  3. ]
  4. data_preprocessor = dict(
  5. type='DetDataPreprocessor',
  6. mean=[123.675, 116.28, 103.53],
  7. std=[58.395, 57.12, 57.375],
  8. bgr_to_rgb=True)
  9. # model settings
  10. model = dict(
  11. type='CornerNet',
  12. data_preprocessor=data_preprocessor,
  13. backbone=dict(
  14. type='HourglassNet',
  15. downsample_times=5,
  16. num_stacks=2,
  17. stage_channels=[256, 256, 384, 384, 384, 512],
  18. stage_blocks=[2, 2, 2, 2, 2, 4],
  19. norm_cfg=dict(type='BN', requires_grad=True)),
  20. neck=None,
  21. bbox_head=dict(
  22. type='CornerHead',
  23. num_classes=80,
  24. in_channels=256,
  25. num_feat_levels=2,
  26. corner_emb_channels=1,
  27. loss_heatmap=dict(
  28. type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
  29. loss_embedding=dict(
  30. type='AssociativeEmbeddingLoss',
  31. pull_weight=0.10,
  32. push_weight=0.10),
  33. loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1)),
  34. # training and testing settings
  35. train_cfg=None,
  36. test_cfg=dict(
  37. corner_topk=100,
  38. local_maximum_kernel=3,
  39. distance_threshold=0.5,
  40. score_thr=0.05,
  41. max_per_img=100,
  42. nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
  43. # data settings
  44. train_pipeline = [
  45. dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
  46. dict(type='LoadAnnotations', with_bbox=True),
  47. dict(
  48. type='PhotoMetricDistortion',
  49. brightness_delta=32,
  50. contrast_range=(0.5, 1.5),
  51. saturation_range=(0.5, 1.5),
  52. hue_delta=18),
  53. dict(
  54. # The cropped images are padded into squares during training,
  55. # but may be smaller than crop_size.
  56. type='RandomCenterCropPad',
  57. crop_size=(511, 511),
  58. ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
  59. test_mode=False,
  60. test_pad_mode=None,
  61. mean=data_preprocessor['mean'],
  62. std=data_preprocessor['std'],
  63. # Image data is not converted to rgb.
  64. to_rgb=data_preprocessor['bgr_to_rgb']),
  65. # Make sure the output is always crop_size.
  66. dict(type='Resize', scale=(511, 511), keep_ratio=False),
  67. dict(type='RandomFlip', prob=0.5),
  68. dict(type='PackDetInputs'),
  69. ]
  70. test_pipeline = [
  71. dict(
  72. type='LoadImageFromFile',
  73. to_float32=True,
  74. backend_args=_base_.backend_args,
  75. ),
  76. # don't need Resize
  77. dict(
  78. type='RandomCenterCropPad',
  79. crop_size=None,
  80. ratios=None,
  81. border=None,
  82. test_mode=True,
  83. test_pad_mode=['logical_or', 127],
  84. mean=data_preprocessor['mean'],
  85. std=data_preprocessor['std'],
  86. # Image data is not converted to rgb.
  87. to_rgb=data_preprocessor['bgr_to_rgb']),
  88. dict(type='LoadAnnotations', with_bbox=True),
  89. dict(
  90. type='PackDetInputs',
  91. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border'))
  92. ]
  93. train_dataloader = dict(
  94. batch_size=6,
  95. num_workers=3,
  96. batch_sampler=None,
  97. dataset=dict(pipeline=train_pipeline))
  98. val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
  99. test_dataloader = val_dataloader
  100. # optimizer
  101. optim_wrapper = dict(
  102. type='OptimWrapper',
  103. optimizer=dict(type='Adam', lr=0.0005),
  104. clip_grad=dict(max_norm=35, norm_type=2))
  105. max_epochs = 210
  106. # learning rate
  107. param_scheduler = [
  108. dict(
  109. type='LinearLR',
  110. start_factor=1.0 / 3,
  111. by_epoch=False,
  112. begin=0,
  113. end=500),
  114. dict(
  115. type='MultiStepLR',
  116. begin=0,
  117. end=max_epochs,
  118. by_epoch=True,
  119. milestones=[180],
  120. gamma=0.1)
  121. ]
  122. train_cfg = dict(
  123. type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
  124. val_cfg = dict(type='ValLoop')
  125. test_cfg = dict(type='TestLoop')
  126. # NOTE: `auto_scale_lr` is for automatically scaling LR,
  127. # USER SHOULD NOT CHANGE ITS VALUES.
  128. # base_batch_size = (8 GPUs) x (6 samples per GPU)
  129. auto_scale_lr = dict(base_batch_size=48)
  130. tta_model = dict(
  131. type='DetTTAModel',
  132. tta_cfg=dict(
  133. nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'),
  134. max_per_img=100))
  135. tta_pipeline = [
  136. dict(
  137. type='LoadImageFromFile',
  138. to_float32=True,
  139. backend_args=_base_.backend_args),
  140. dict(
  141. type='TestTimeAug',
  142. transforms=[
  143. [
  144. # ``RandomFlip`` must be placed before ``RandomCenterCropPad``,
  145. # otherwise bounding box coordinates after flipping cannot be
  146. # recovered correctly.
  147. dict(type='RandomFlip', prob=1.),
  148. dict(type='RandomFlip', prob=0.)
  149. ],
  150. [
  151. dict(
  152. type='RandomCenterCropPad',
  153. crop_size=None,
  154. ratios=None,
  155. border=None,
  156. test_mode=True,
  157. test_pad_mode=['logical_or', 127],
  158. mean=data_preprocessor['mean'],
  159. std=data_preprocessor['std'],
  160. # Image data is not converted to rgb.
  161. to_rgb=data_preprocessor['bgr_to_rgb'])
  162. ],
  163. [dict(type='LoadAnnotations', with_bbox=True)],
  164. [
  165. dict(
  166. type='PackDetInputs',
  167. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
  168. 'flip', 'flip_direction', 'border'))
  169. ]
  170. ])
  171. ]