123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990 |
- _base_ = [
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- lang_model_name = 'bert-base-uncased'
- model = dict(
- type='GLIP',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[103.53, 116.28, 123.675],
- std=[57.375, 57.12, 58.395],
- bgr_to_rgb=False,
- pad_size_divisor=32),
- backbone=dict(
- type='SwinTransformer',
- embed_dims=96,
- depths=[2, 2, 6, 2],
- num_heads=[3, 6, 12, 24],
- window_size=7,
- mlp_ratio=4,
- qkv_bias=True,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.2,
- patch_norm=True,
- out_indices=(1, 2, 3),
- with_cp=False,
- convert_weights=False),
- neck=dict(
- type='FPN',
- in_channels=[192, 384, 768],
- out_channels=256,
- start_level=0,
- relu_before_extra_convs=True,
- add_extra_convs='on_output',
- num_outs=5),
- bbox_head=dict(
- type='ATSSVLFusionHead',
- lang_model_name=lang_model_name,
- num_classes=80,
- in_channels=256,
- feat_channels=256,
- anchor_generator=dict(
- type='AnchorGenerator',
- ratios=[1.0],
- octave_base_scale=8,
- scales_per_octave=1,
- strides=[8, 16, 32, 64, 128],
- center_offset=0.5),
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoderForGLIP',
- target_means=[.0, .0, .0, .0],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- ),
- language_model=dict(type='BertModel', name=lang_model_name),
- train_cfg=dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100))
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args,
- imdecode_backend='pillow'),
- dict(
- type='FixScaleResize',
- scale=(800, 1333),
- keep_ratio=True,
- backend='pillow'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'text', 'custom_entities'))
- ]
- val_dataloader = dict(
- dataset=dict(pipeline=test_pipeline, return_classes=True))
- test_dataloader = val_dataloader
|