metafile.yml 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. - Name: retinanet_r50_fpn_1x_objects365v1
  2. In Collection: RetinaNet
  3. Config: configs/objects365/retinanet_r50_fpn_1x_objects365v1.py
  4. Metadata:
  5. Training Memory (GB): 7.4
  6. Epochs: 12
  7. Training Data: Objects365 v1
  8. Training Techniques:
  9. - SGD with Momentum
  10. - Weight Decay
  11. Results:
  12. - Task: Object Detection
  13. Dataset: Objects365 v1
  14. Metrics:
  15. box AP: 14.8
  16. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v1/retinanet_r50_fpn_1x_obj365v1_20221219_181859-ba3e3dd5.pth
  17. - Name: retinanet_r50-syncbn_fpn_1350k_objects365v1
  18. In Collection: RetinaNet
  19. Config: configs/objects365/retinanet_r50-syncbn_fpn_1350k_objects365v1.py
  20. Metadata:
  21. Training Memory (GB): 7.6
  22. Iterations: 1350000
  23. Training Data: Objects365 v1
  24. Training Techniques:
  25. - SGD with Momentum
  26. - Weight Decay
  27. Results:
  28. - Task: Object Detection
  29. Dataset: Objects365 v1
  30. Metrics:
  31. box AP: 18.0
  32. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1/retinanet_r50_fpn_syncbn_1350k_obj365v1_20220513_111237-7517c576.pth
  33. - Name: retinanet_r50_fpn_1x_objects365v2
  34. In Collection: RetinaNet
  35. Config: configs/objects365/retinanet_r50_fpn_1x_objects365v2.py
  36. Metadata:
  37. Training Memory (GB): 7.2
  38. Epochs: 12
  39. Training Data: Objects365 v2
  40. Training Techniques:
  41. - SGD with Momentum
  42. - Weight Decay
  43. Results:
  44. - Task: Object Detection
  45. Dataset: Objects365 v2
  46. Metrics:
  47. box AP: 16.7
  48. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v2/retinanet_r50_fpn_1x_obj365v2_20221223_122105-d9b191f1.pth
  49. - Name: faster-rcnn_r50_fpn_16xb4-1x_objects365v1
  50. In Collection: Faster R-CNN
  51. Config: configs/objects365/faster-rcnn_r50_fpn_16xb4-1x_objects365v1.py
  52. Metadata:
  53. Training Memory (GB): 11.4
  54. Epochs: 12
  55. Training Data: Objects365 v1
  56. Training Techniques:
  57. - SGD with Momentum
  58. - Weight Decay
  59. Results:
  60. - Task: Object Detection
  61. Dataset: Objects365 v1
  62. Metrics:
  63. box AP: 19.6
  64. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1/faster_rcnn_r50_fpn_16x4_1x_obj365v1_20221219_181226-9ff10f95.pth
  65. - Name: faster-rcnn_r50-syncbn_fpn_1350k_objects365v1
  66. In Collection: Faster R-CNN
  67. Config: configs/objects365/faster-rcnn_r50-syncbn_fpn_1350k_objects365v1.py
  68. Metadata:
  69. Training Memory (GB): 8.6
  70. Iterations: 1350000
  71. Training Data: Objects365 v1
  72. Training Techniques:
  73. - SGD with Momentum
  74. - Weight Decay
  75. Results:
  76. - Task: Object Detection
  77. Dataset: Objects365 v1
  78. Metrics:
  79. box AP: 22.3
  80. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1_20220510_142457-337d8965.pth
  81. - Name: faster-rcnn_r50_fpn_16xb4-1x_objects365v2
  82. In Collection: Faster R-CNN
  83. Config: configs/objects365/faster-rcnn_r50_fpn_16xb4-1x_objects365v2.py
  84. Metadata:
  85. Training Memory (GB): 10.8
  86. Epochs: 12
  87. Training Data: Objects365 v1
  88. Training Techniques:
  89. - SGD with Momentum
  90. - Weight Decay
  91. Results:
  92. - Task: Object Detection
  93. Dataset: Objects365 v2
  94. Metrics:
  95. box AP: 19.8
  96. Weights: https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2/faster_rcnn_r50_fpn_16x4_1x_obj365v2_20221220_175040-5910b015.pth