123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- # Copyright (c) OpenMMLab. All rights reserved.
- # Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa
- # mmcv >= 2.0.1
- # mmengine >= 0.8.0
- from mmengine.config import read_base
- with read_base():
- from .._base_.default_runtime import *
- from .._base_.schedules.schedule_1x import *
- from .._base_.datasets.coco_detection import *
- from .rtmdet_tta import *
- from mmcv.ops import nms
- from mmcv.transforms.loading import LoadImageFromFile
- from mmcv.transforms.processing import RandomResize
- from mmengine.hooks.ema_hook import EMAHook
- from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
- from mmengine.optim.scheduler.lr_scheduler import CosineAnnealingLR, LinearLR
- from torch.nn import SyncBatchNorm
- from torch.nn.modules.activation import SiLU
- from torch.optim.adamw import AdamW
- from mmdet.datasets.transforms.formatting import PackDetInputs
- from mmdet.datasets.transforms.loading import LoadAnnotations
- from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic,
- Pad, RandomCrop, RandomFlip,
- Resize, YOLOXHSVRandomAug)
- from mmdet.engine.hooks.pipeline_switch_hook import PipelineSwitchHook
- from mmdet.models.backbones.cspnext import CSPNeXt
- from mmdet.models.data_preprocessors.data_preprocessor import \
- DetDataPreprocessor
- from mmdet.models.dense_heads.rtmdet_head import RTMDetSepBNHead
- from mmdet.models.detectors.rtmdet import RTMDet
- from mmdet.models.layers.ema import ExpMomentumEMA
- from mmdet.models.losses.gfocal_loss import QualityFocalLoss
- from mmdet.models.losses.iou_loss import GIoULoss
- from mmdet.models.necks.cspnext_pafpn import CSPNeXtPAFPN
- from mmdet.models.task_modules.assigners.dynamic_soft_label_assigner import \
- DynamicSoftLabelAssigner
- from mmdet.models.task_modules.coders.distance_point_bbox_coder import \
- DistancePointBBoxCoder
- from mmdet.models.task_modules.prior_generators.point_generator import \
- MlvlPointGenerator
- model = dict(
- type=RTMDet,
- data_preprocessor=dict(
- type=DetDataPreprocessor,
- mean=[103.53, 116.28, 123.675],
- std=[57.375, 57.12, 58.395],
- bgr_to_rgb=False,
- batch_augments=None),
- backbone=dict(
- type=CSPNeXt,
- arch='P5',
- expand_ratio=0.5,
- deepen_factor=1,
- widen_factor=1,
- channel_attention=True,
- norm_cfg=dict(type=SyncBatchNorm),
- act_cfg=dict(type=SiLU, inplace=True)),
- neck=dict(
- type=CSPNeXtPAFPN,
- in_channels=[256, 512, 1024],
- out_channels=256,
- num_csp_blocks=3,
- expand_ratio=0.5,
- norm_cfg=dict(type=SyncBatchNorm),
- act_cfg=dict(type=SiLU, inplace=True)),
- bbox_head=dict(
- type=RTMDetSepBNHead,
- num_classes=80,
- in_channels=256,
- stacked_convs=2,
- feat_channels=256,
- anchor_generator=dict(
- type=MlvlPointGenerator, offset=0, strides=[8, 16, 32]),
- bbox_coder=dict(type=DistancePointBBoxCoder),
- loss_cls=dict(
- type=QualityFocalLoss, use_sigmoid=True, beta=2.0,
- loss_weight=1.0),
- loss_bbox=dict(type=GIoULoss, loss_weight=2.0),
- with_objectness=False,
- exp_on_reg=True,
- share_conv=True,
- pred_kernel_size=1,
- norm_cfg=dict(type=SyncBatchNorm),
- act_cfg=dict(type=SiLU, inplace=True)),
- train_cfg=dict(
- assigner=dict(type=DynamicSoftLabelAssigner, topk=13),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- nms_pre=30000,
- min_bbox_size=0,
- score_thr=0.001,
- nms=dict(type=nms, iou_threshold=0.65),
- max_per_img=300),
- )
- train_pipeline = [
- dict(type=LoadImageFromFile, backend_args=backend_args),
- dict(type=LoadAnnotations, with_bbox=True),
- dict(type=CachedMosaic, img_scale=(640, 640), pad_val=114.0),
- dict(
- type=RandomResize,
- scale=(1280, 1280),
- ratio_range=(0.1, 2.0),
- resize_type=Resize,
- keep_ratio=True),
- dict(type=RandomCrop, crop_size=(640, 640)),
- dict(type=YOLOXHSVRandomAug),
- dict(type=RandomFlip, prob=0.5),
- dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(
- type=CachedMixUp,
- img_scale=(640, 640),
- ratio_range=(1.0, 1.0),
- max_cached_images=20,
- pad_val=(114, 114, 114)),
- dict(type=PackDetInputs)
- ]
- train_pipeline_stage2 = [
- dict(type=LoadImageFromFile, backend_args=backend_args),
- dict(type=LoadAnnotations, with_bbox=True),
- dict(
- type=RandomResize,
- scale=(640, 640),
- ratio_range=(0.1, 2.0),
- resize_type=Resize,
- keep_ratio=True),
- dict(type=RandomCrop, crop_size=(640, 640)),
- dict(type=YOLOXHSVRandomAug),
- dict(type=RandomFlip, prob=0.5),
- dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(type=PackDetInputs)
- ]
- test_pipeline = [
- dict(type=LoadImageFromFile, backend_args=backend_args),
- dict(type=Resize, scale=(640, 640), keep_ratio=True),
- dict(type=Pad, size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(type=LoadAnnotations, with_bbox=True),
- dict(
- type=PackDetInputs,
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader.update(
- dict(
- batch_size=32,
- num_workers=10,
- batch_sampler=None,
- pin_memory=True,
- dataset=dict(pipeline=train_pipeline)))
- val_dataloader.update(
- dict(batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline)))
- test_dataloader = val_dataloader
- max_epochs = 300
- stage2_num_epochs = 20
- base_lr = 0.004
- interval = 10
- train_cfg.update(
- dict(
- max_epochs=max_epochs,
- val_interval=interval,
- dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)]))
- val_evaluator.update(dict(proposal_nums=(100, 1, 10)))
- test_evaluator = val_evaluator
- # optimizer
- optim_wrapper = dict(
- type=OptimWrapper,
- optimizer=dict(type=AdamW, lr=base_lr, weight_decay=0.05),
- paramwise_cfg=dict(
- norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
- # learning rate
- param_scheduler = [
- dict(
- type=LinearLR, start_factor=1.0e-5, by_epoch=False, begin=0, end=1000),
- dict(
- # use cosine lr from 150 to 300 epoch
- type=CosineAnnealingLR,
- eta_min=base_lr * 0.05,
- begin=max_epochs // 2,
- end=max_epochs,
- T_max=max_epochs // 2,
- by_epoch=True,
- convert_to_iter_based=True),
- ]
- # hooks
- default_hooks.update(
- dict(
- checkpoint=dict(
- interval=interval,
- max_keep_ckpts=3 # only keep latest 3 checkpoints
- )))
- custom_hooks = [
- dict(
- type=EMAHook,
- ema_type=ExpMomentumEMA,
- momentum=0.0002,
- update_buffers=True,
- priority=49),
- dict(
- type=PipelineSwitchHook,
- switch_epoch=max_epochs - stage2_num_epochs,
- switch_pipeline=train_pipeline_stage2)
- ]
|