123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.config import ConfigDict
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import GARPNHead
- ga_rpn_config = ConfigDict(
- dict(
- num_classes=1,
- in_channels=4,
- feat_channels=4,
- approx_anchor_generator=dict(
- type='AnchorGenerator',
- octave_base_scale=8,
- scales_per_octave=3,
- ratios=[0.5, 1.0, 2.0],
- strides=[4, 8, 16, 32, 64]),
- square_anchor_generator=dict(
- type='AnchorGenerator',
- ratios=[1.0],
- scales=[8],
- strides=[4, 8, 16, 32, 64]),
- anchor_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[.0, .0, .0, .0],
- target_stds=[0.07, 0.07, 0.14, 0.14]),
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[.0, .0, .0, .0],
- target_stds=[0.07, 0.07, 0.11, 0.11]),
- loc_filter_thr=0.01,
- loss_loc=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_shape=dict(type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0),
- train_cfg=dict(
- ga_assigner=dict(
- type='ApproxMaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- ignore_iof_thr=-1),
- ga_sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=-1,
- center_ratio=0.2,
- ignore_ratio=0.5,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- nms_pre=1000,
- ms_post=1000,
- max_per_img=300,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=0)))
- class TestGARPNHead(TestCase):
- def test_ga_rpn_head_loss(self):
- """Tests ga rpn head loss."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s),
- 'pad_shape': (s, s),
- 'scale_factor': (1, 1)
- }]
- ga_rpn_head = GARPNHead(**ga_rpn_config)
- feats = (
- torch.rand(1, 4, s // stride[1], s // stride[0])
- for stride in ga_rpn_head.square_anchor_generator.strides)
- outs = ga_rpn_head(feats)
- # When truth is non-empty then all cls, box loss and centerness loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([0])
- one_gt_losses = ga_rpn_head.loss_by_feat(*outs, [gt_instances],
- img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls']).item()
- onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox']).item()
- onegt_shape_loss = sum(one_gt_losses['loss_anchor_shape']).item()
- onegt_loc_loss = sum(one_gt_losses['loss_anchor_loc']).item()
- self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero')
- self.assertGreater(onegt_shape_loss, 0,
- 'shape loss should be non-zero')
- self.assertGreater(onegt_loc_loss, 0,
- 'location loss should be non-zero')
- def test_ga_rpn_head_predict_by_feat(self):
- s = 256
- img_metas = [{
- 'img_shape': (s, s),
- 'pad_shape': (s, s),
- 'scale_factor': (1, 1)
- }]
- ga_rpn_head = GARPNHead(**ga_rpn_config)
- feats = (
- torch.rand(1, 4, s // stride[1], s // stride[0])
- for stride in ga_rpn_head.square_anchor_generator.strides)
- outs = ga_rpn_head(feats)
- cfg = ConfigDict(
- dict(
- nms_pre=2000,
- nms_post=1000,
- max_per_img=300,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=0))
- ga_rpn_head.predict_by_feat(
- *outs, batch_img_metas=img_metas, cfg=cfg, rescale=True)
|