12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import RetinaSepBNHead
- class TestRetinaSepBNHead(TestCase):
- def test_init(self):
- """Test init RetinaSepBN head."""
- anchor_head = RetinaSepBNHead(num_classes=1, num_ins=1, in_channels=1)
- anchor_head.init_weights()
- self.assertTrue(anchor_head.cls_convs)
- self.assertTrue(anchor_head.reg_convs)
- self.assertTrue(anchor_head.retina_cls)
- self.assertTrue(anchor_head.retina_reg)
- def test_retina_sepbn_head_loss(self):
- """Tests RetinaSepBN head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- sampler=dict(type='PseudoSampler'
- ), # Focal loss should use PseudoSampler
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- anchor_head = RetinaSepBNHead(
- num_classes=4, num_ins=5, in_channels=1, train_cfg=cfg)
- # Anchor head expects a multiple levels of features per image
- feats = []
- for i in range(len(anchor_head.prior_generator.strides)):
- feats.append(
- torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))))
- cls_scores, bbox_preds = anchor_head.forward(tuple(feats))
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box loss.
- empty_cls_loss = sum(empty_gt_losses['loss_cls'])
- empty_box_loss = sum(empty_gt_losses['loss_bbox'])
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_cls'])
- onegt_box_loss = sum(one_gt_losses['loss_bbox'])
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
|