123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import time
- import unittest
- from unittest import TestCase
- import torch
- from mmengine.logging import MessageHub
- from mmengine.registry import init_default_scope
- from parameterized import parameterized
- from mmdet.registry import MODELS
- from mmdet.testing import demo_track_inputs, get_detector_cfg
- class TestDeepSORT(TestCase):
- @classmethod
- def setUpClass(cls):
- init_default_scope('mmdet')
- @parameterized.expand([
- 'sort/sort_faster-rcnn_r50_fpn_8xb2-4e'
- '_mot17halftrain_test-mot17halfval.py'
- ])
- def test_init(self, cfg_file):
- model = get_detector_cfg(cfg_file)
- model = MODELS.build(model)
- assert model.detector
- assert model.tracker
- @parameterized.expand([
- ('sort/sort_faster-rcnn_r50_fpn_8xb2-4e'
- '_mot17halftrain_test-mot17halfval.py', ('cpu', 'cuda')),
- ])
- def test_deepsort_forward_predict_mode(self, cfg_file, devices):
- message_hub = MessageHub.get_instance(
- f'test_deepsort_forward_predict_mode-{time.time()}')
- message_hub.update_info('iter', 0)
- message_hub.update_info('epoch', 0)
- assert all([device in ['cpu', 'cuda'] for device in devices])
- for device in devices:
- _model = get_detector_cfg(cfg_file)
- model = MODELS.build(_model)
- if device == 'cuda':
- if not torch.cuda.is_available():
- return unittest.skip('test requires GPU and torch+cuda')
- model = model.cuda()
- packed_inputs = demo_track_inputs(
- batch_size=1,
- num_frames=2,
- image_shapes=[(3, 256, 256)],
- num_classes=1)
- out_data = model.data_preprocessor(packed_inputs, False)
- # Test forward test
- model.eval()
- with torch.no_grad():
- batch_results = model.forward(**out_data, mode='predict')
- assert len(batch_results) == 1
|