1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import unittest
- from unittest import TestCase
- import torch
- from parameterized import parameterized
- from mmdet.registry import MODELS
- from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg
- from mmdet.utils import register_all_modules
- class TestPISARoIHead(TestCase):
- def setUp(self):
- register_all_modules()
- self.roi_head_cfg = get_roi_head_cfg(
- 'pisa/faster-rcnn_r50_fpn_pisa_1x_coco.py')
- def test_init(self):
- roi_head = MODELS.build(self.roi_head_cfg)
- self.assertTrue(roi_head.with_bbox)
- @parameterized.expand(['cpu', 'cuda'])
- def test_pisa_roi_head(self, device):
- """Tests trident roi head predict."""
- if not torch.cuda.is_available() and device == 'cuda':
- # RoI pooling only support in GPU
- return unittest.skip('test requires GPU and torch+cuda')
- roi_head = MODELS.build(self.roi_head_cfg)
- roi_head = roi_head.to(device=device)
- s = 256
- feats = []
- for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)):
- feats.append(
- torch.rand(1, 256, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device=device))
- image_shapes = [(3, s, s)]
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=image_shapes,
- num_items=[1],
- num_classes=4,
- with_mask=True,
- device=device)['data_samples']
- proposals_list = demo_mm_proposals(
- image_shapes=image_shapes, num_proposals=100, device=device)
- out = roi_head.loss(feats, proposals_list, batch_data_samples)
- loss_cls = out['loss_cls']
- loss_bbox = out['loss_bbox']
- self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero')
- self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero')
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=image_shapes,
- num_items=[0],
- num_classes=4,
- with_mask=True,
- device=device)['data_samples']
- proposals_list = demo_mm_proposals(
- image_shapes=image_shapes, num_proposals=100, device=device)
- out = roi_head.loss(feats, proposals_list, batch_data_samples)
- empty_cls_loss = out['loss_cls']
- empty_bbox_loss = out['loss_bbox']
- self.assertGreater(empty_cls_loss.sum(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_bbox_loss.sum(), 0,
- 'there should be no box loss when there are no true boxes')
|