123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import unittest
- from unittest import TestCase
- import torch
- from parameterized import parameterized
- from mmdet.models.roi_heads import SCNetRoIHead # noqa
- from mmdet.registry import MODELS
- from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg
- class TestSCNetRoIHead(TestCase):
- @parameterized.expand(['scnet/scnet_r50_fpn_1x_coco.py'])
- def test_init(self, cfg_file):
- """Test init scnet RoI head."""
- # Normal Cascade Mask R-CNN RoI head
- roi_head_cfg = get_roi_head_cfg(cfg_file)
- roi_head = MODELS.build(roi_head_cfg)
- assert roi_head.with_bbox
- assert roi_head.with_mask
- assert roi_head.with_semantic
- assert roi_head.with_feat_relay
- assert roi_head.with_glbctx
- @parameterized.expand(['scnet/scnet_r50_fpn_1x_coco.py'])
- def test_scnet_roi_head_loss(self, cfg_file):
- """Tests htc roi head loss when truth is empty and non-empty."""
- if not torch.cuda.is_available():
- # RoI pooling only support in GPU
- return unittest.skip('test requires GPU and torch+cuda')
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- roi_head_cfg = get_roi_head_cfg(cfg_file)
- roi_head = MODELS.build(roi_head_cfg)
- roi_head = roi_head.cuda()
- feats = []
- for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)):
- feats.append(
- torch.rand(1, 256, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device='cuda'))
- feats = tuple(feats)
- # When truth is non-empty then both cls, box, and mask loss
- # should be nonzero for random inputs
- img_shape_list = [(3, s, s) for _ in img_metas]
- proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda')
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=[(3, s, s)],
- num_items=[1],
- num_classes=4,
- with_mask=True,
- with_semantic=True,
- device='cuda')['data_samples']
- out = roi_head.loss(feats, proposal_list, batch_data_samples)
- for name, value in out.items():
- if 'loss' in name:
- self.assertGreaterEqual(
- value.sum(), 0, msg='loss should be non-zero')
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box and mask loss.
- proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda')
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=[(3, s, s)],
- num_items=[0],
- num_classes=4,
- with_mask=True,
- with_semantic=True,
- device='cuda')['data_samples']
- out = roi_head.loss(feats, proposal_list, batch_data_samples)
- for name, value in out.items():
- if 'loss_cls' in name:
- self.assertGreaterEqual(
- value.sum(), 0, msg='loss should be non-zero')
- elif 'loss_bbox' in name or 'loss_mask' in name:
- self.assertEqual(value.sum(), 0)
- @parameterized.expand(['scnet/scnet_r50_fpn_1x_coco.py'])
- def test_scnet_roi_head_predict(self, cfg_file):
- if not torch.cuda.is_available():
- # RoI pooling only support in GPU
- return unittest.skip('test requires GPU and torch+cuda')
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- roi_head_cfg = get_roi_head_cfg(cfg_file)
- roi_head = MODELS.build(roi_head_cfg)
- roi_head = roi_head.cuda()
- feats = []
- for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)):
- feats.append(
- torch.rand(1, 256, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device='cuda'))
- feats = tuple(feats)
- img_shape_list = [(3, s, s) for _ in img_metas]
- proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda')
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=[(3, s, s)],
- num_items=[1],
- num_classes=4,
- with_mask=True,
- device='cuda')['data_samples']
- results = roi_head.predict(
- feats, proposal_list, batch_data_samples, rescale=True)
- self.assertEqual(results[0].masks.shape[-2:], (s, s))
|