1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import unittest
- from unittest import TestCase
- import torch
- import torch.nn as nn
- from parameterized import parameterized
- from mmdet.models.roi_heads import StandardRoIHead # noqa
- from mmdet.registry import MODELS
- from mmdet.testing import demo_mm_inputs, demo_mm_proposals, get_roi_head_cfg
- class TestCascadeRoIHead(TestCase):
- @parameterized.expand(['queryinst/queryinst_r50_fpn_1x_coco.py'])
- def test_init(self, cfg_file):
- """Test init standard RoI head."""
- # Normal Cascade Mask R-CNN RoI head
- roi_head_cfg = get_roi_head_cfg(cfg_file)
- roi_head = MODELS.build(roi_head_cfg)
- roi_head.init_weights()
- assert roi_head.with_bbox
- assert roi_head.with_mask
- @parameterized.expand(['queryinst/queryinst_r50_fpn_1x_coco.py'])
- def test_cascade_roi_head_loss(self, cfg_file):
- """Tests standard roi head loss when truth is empty and non-empty."""
- if not torch.cuda.is_available():
- # RoI pooling only support in GPU
- return unittest.skip('test requires GPU and torch+cuda')
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- roi_head_cfg = get_roi_head_cfg(cfg_file)
- roi_head = MODELS.build(roi_head_cfg)
- roi_head = roi_head.cuda()
- feats = []
- for i in range(len(roi_head_cfg.bbox_roi_extractor.featmap_strides)):
- feats.append(
- torch.rand(1, 1, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device='cuda'))
- feats = tuple(feats)
- # When truth is non-empty then both cls, box, and mask loss
- # should be nonzero for random inputs
- img_shape_list = [(3, s, s) for _ in img_metas]
- proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda')
- # add import elements into proposal
- init_proposal_features = nn.Embedding(100, 256).cuda().weight.clone()
- for proposal in proposal_list:
- proposal.features = init_proposal_features
- proposal.imgs_whwh = feats[0].new_tensor([[s, s, s,
- s]]).repeat(100, 1)
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=[(3, s, s)],
- num_items=[1],
- num_classes=4,
- with_mask=True,
- device='cuda')['data_samples']
- out = roi_head.loss(feats, proposal_list, batch_data_samples)
- for name, value in out.items():
- if 'loss' in name:
- self.assertGreaterEqual(
- value.sum(), 0, msg='loss should be non-zero')
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box and mask loss.
- proposal_list = demo_mm_proposals(img_shape_list, 100, device='cuda')
- # add import elements into proposal
- init_proposal_features = nn.Embedding(100, 256).cuda().weight.clone()
- for proposal in proposal_list:
- proposal.features = init_proposal_features
- proposal.imgs_whwh = feats[0].new_tensor([[s, s, s,
- s]]).repeat(100, 1)
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=[(3, s, s)],
- num_items=[0],
- num_classes=4,
- with_mask=True,
- device='cuda')['data_samples']
- out = roi_head.loss(feats, proposal_list, batch_data_samples)
- for name, value in out.items():
- if 'loss_cls' in name:
- self.assertGreaterEqual(
- value.sum(), 0, msg='loss should be non-zero')
- elif 'loss_bbox' in name or 'loss_mask' in name:
- self.assertEqual(value.sum(), 0)
|