123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import unittest
- from unittest import TestCase
- import torch
- from mmengine.config import Config
- from parameterized import parameterized
- from mmdet.registry import MODELS
- from mmdet.testing import demo_mm_inputs, demo_mm_proposals
- from mmdet.utils import register_all_modules
- register_all_modules()
- def _fake_roi_head(with_shared_head=False):
- """Set a fake roi head config."""
- if not with_shared_head:
- roi_head = Config(
- dict(
- type='StandardRoIHead',
- bbox_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign', output_size=7, sampling_ratio=0),
- out_channels=1,
- featmap_strides=[4, 8, 16, 32]),
- bbox_head=dict(
- type='Shared2FCBBoxHead',
- in_channels=1,
- fc_out_channels=1,
- num_classes=4),
- mask_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign', output_size=14, sampling_ratio=0),
- out_channels=1,
- featmap_strides=[4, 8, 16, 32]),
- mask_head=dict(
- type='FCNMaskHead',
- num_convs=1,
- in_channels=1,
- conv_out_channels=1,
- num_classes=4),
- train_cfg=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.5,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- mask_size=28,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100,
- mask_thr_binary=0.5)))
- else:
- roi_head = Config(
- dict(
- type='StandardRoIHead',
- shared_head=dict(
- type='ResLayer',
- depth=50,
- stage=3,
- stride=2,
- dilation=1,
- style='caffe',
- norm_cfg=dict(type='BN', requires_grad=False),
- norm_eval=True),
- bbox_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign', output_size=14, sampling_ratio=0),
- out_channels=1,
- featmap_strides=[16]),
- bbox_head=dict(
- type='BBoxHead',
- with_avg_pool=True,
- in_channels=2048,
- roi_feat_size=7,
- num_classes=4),
- mask_roi_extractor=None,
- mask_head=dict(
- type='FCNMaskHead',
- num_convs=0,
- in_channels=2048,
- conv_out_channels=1,
- num_classes=4),
- train_cfg=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.5,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- mask_size=14,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=100,
- mask_thr_binary=0.5)))
- return roi_head
- class TestStandardRoIHead(TestCase):
- def test_init(self):
- """Test init standard RoI head."""
- # Normal Mask R-CNN RoI head
- roi_head_cfg = _fake_roi_head()
- roi_head = MODELS.build(roi_head_cfg)
- self.assertTrue(roi_head.with_bbox)
- self.assertTrue(roi_head.with_mask)
- # Mask R-CNN RoI head with shared_head
- roi_head_cfg = _fake_roi_head(with_shared_head=True)
- roi_head = MODELS.build(roi_head_cfg)
- self.assertTrue(roi_head.with_bbox)
- self.assertTrue(roi_head.with_mask)
- self.assertTrue(roi_head.with_shared_head)
- @parameterized.expand([(False, ), (True, )])
- def test_standard_roi_head_loss(self, with_shared_head):
- """Tests standard roi head loss when truth is empty and non-empty."""
- if not torch.cuda.is_available():
- # RoI pooling only support in GPU
- return unittest.skip('test requires GPU and torch+cuda')
- s = 256
- roi_head_cfg = _fake_roi_head(with_shared_head=with_shared_head)
- roi_head = MODELS.build(roi_head_cfg)
- roi_head = roi_head.cuda()
- feats = []
- for i in range(len(roi_head.bbox_roi_extractor.featmap_strides)):
- if not with_shared_head:
- feats.append(
- torch.rand(1, 1, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device='cuda'))
- else:
- feats.append(
- torch.rand(1, 1024, s // (2**(i + 2)),
- s // (2**(i + 2))).to(device='cuda'))
- feats = tuple(feats)
- # When truth is non-empty then both cls, box, and mask loss
- # should be nonzero for random inputs
- image_shapes = [(3, s, s)]
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=image_shapes,
- num_items=[1],
- num_classes=4,
- with_mask=True,
- device='cuda')['data_samples']
- proposals_list = demo_mm_proposals(
- image_shapes=image_shapes, num_proposals=100, device='cuda')
- out = roi_head.loss(feats, proposals_list, batch_data_samples)
- loss_cls = out['loss_cls']
- loss_bbox = out['loss_bbox']
- loss_mask = out['loss_mask']
- self.assertGreater(loss_cls.sum(), 0, 'cls loss should be non-zero')
- self.assertGreater(loss_bbox.sum(), 0, 'box loss should be non-zero')
- self.assertGreater(loss_mask.sum(), 0, 'mask loss should be non-zero')
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box and mask loss.
- batch_data_samples = demo_mm_inputs(
- batch_size=1,
- image_shapes=image_shapes,
- num_items=[0],
- num_classes=4,
- with_mask=True,
- device='cuda')['data_samples']
- proposals_list = demo_mm_proposals(
- image_shapes=image_shapes, num_proposals=100, device='cuda')
- out = roi_head.loss(feats, proposals_list, batch_data_samples)
- empty_cls_loss = out['loss_cls']
- empty_bbox_loss = out['loss_bbox']
- empty_mask_loss = out['loss_mask']
- self.assertGreater(empty_cls_loss.sum(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_bbox_loss.sum(), 0,
- 'there should be no box loss when there are no true boxes')
- self.assertEqual(
- empty_mask_loss.sum(), 0,
- 'there should be no mask loss when there are no true boxes')
|