123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- dataset_type = 'ADE20KSegDataset'
- data_root = 'data/ADEChallengeData2016/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/ADEChallengeData2016/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(2048, 512), keep_ratio=True),
- dict(
- type='LoadAnnotations',
- with_bbox=False,
- with_mask=False,
- with_seg=True,
- reduce_zero_label=True),
- dict(
- type='PackDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape'))
- ]
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- data_prefix=dict(
- img_path='images/validation',
- seg_map_path='annotations/validation'),
- pipeline=test_pipeline))
- test_dataloader = val_dataloader
- val_evaluator = dict(type='SemSegMetric', iou_metrics=['mIoU'])
- test_evaluator = val_evaluator
|