coco_caption.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # data settings
  2. dataset_type = 'CocoCaptionDataset'
  3. data_root = 'data/coco/'
  4. # Example to use different file client
  5. # Method 1: simply set the data root and let the file I/O module
  6. # automatically infer from prefix (not support LMDB and Memcache yet)
  7. # data_root = 's3://openmmlab/datasets/detection/coco/'
  8. # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
  9. # backend_args = dict(
  10. # backend='petrel',
  11. # path_mapping=dict({
  12. # './data/': 's3://openmmlab/datasets/detection/',
  13. # 'data/': 's3://openmmlab/datasets/detection/'
  14. # }))
  15. backend_args = None
  16. test_pipeline = [
  17. dict(
  18. type='LoadImageFromFile',
  19. imdecode_backend='pillow',
  20. backend_args=backend_args),
  21. dict(
  22. type='Resize',
  23. scale=(224, 224),
  24. interpolation='bicubic',
  25. backend='pillow'),
  26. dict(type='PackInputs', meta_keys=['image_id']),
  27. ]
  28. # ann_file download from
  29. # train dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json # noqa
  30. # val dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json # noqa
  31. # test dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json # noqa
  32. # val evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json # noqa
  33. # test evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json # noqa
  34. val_dataloader = dict(
  35. batch_size=1,
  36. num_workers=2,
  37. persistent_workers=True,
  38. drop_last=False,
  39. sampler=dict(type='DefaultSampler', shuffle=False),
  40. dataset=dict(
  41. type=dataset_type,
  42. data_root=data_root,
  43. ann_file='annotations/coco_karpathy_val.json',
  44. pipeline=test_pipeline,
  45. ))
  46. val_evaluator = dict(
  47. type='COCOCaptionMetric',
  48. ann_file=data_root + 'annotations/coco_karpathy_val_gt.json',
  49. )
  50. # # If you want standard test, please manually configure the test dataset
  51. test_dataloader = val_dataloader
  52. test_evaluator = val_evaluator