123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- # data settings
- dataset_type = 'CocoCaptionDataset'
- data_root = 'data/coco/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- imdecode_backend='pillow',
- backend_args=backend_args),
- dict(
- type='Resize',
- scale=(224, 224),
- interpolation='bicubic',
- backend='pillow'),
- dict(type='PackInputs', meta_keys=['image_id']),
- ]
- # ann_file download from
- # train dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json # noqa
- # val dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json # noqa
- # test dataset: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json # noqa
- # val evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json # noqa
- # test evaluator: https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json # noqa
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/coco_karpathy_val.json',
- pipeline=test_pipeline,
- ))
- val_evaluator = dict(
- type='COCOCaptionMetric',
- ann_file=data_root + 'annotations/coco_karpathy_val_gt.json',
- )
- # # If you want standard test, please manually configure the test dataset
- test_dataloader = val_dataloader
- test_evaluator = val_evaluator
|