coco_semantic.py 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. # dataset settings
  2. dataset_type = 'CocoSegDataset'
  3. data_root = 'data/coco/'
  4. # Example to use different file client
  5. # Method 1: simply set the data root and let the file I/O module
  6. # automatically infer from prefix (not support LMDB and Memcache yet)
  7. # data_root = 's3://openmmlab/datasets/detection/coco/'
  8. # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
  9. # backend_args = dict(
  10. # backend='petrel',
  11. # path_mapping=dict({
  12. # './data/': 's3://openmmlab/datasets/detection/',
  13. # 'data/': 's3://openmmlab/datasets/detection/'
  14. # }))
  15. backend_args = None
  16. train_pipeline = [
  17. dict(type='LoadImageFromFile', backend_args=backend_args),
  18. dict(
  19. type='LoadAnnotations',
  20. with_bbox=False,
  21. with_label=False,
  22. with_seg=True),
  23. dict(type='Resize', scale=(1333, 800), keep_ratio=True),
  24. dict(type='RandomFlip', prob=0.5),
  25. dict(type='PackDetInputs')
  26. ]
  27. test_pipeline = [
  28. dict(type='LoadImageFromFile', backend_args=backend_args),
  29. dict(type='Resize', scale=(1333, 800), keep_ratio=True),
  30. dict(
  31. type='LoadAnnotations',
  32. with_bbox=False,
  33. with_label=False,
  34. with_seg=True),
  35. dict(
  36. type='PackDetInputs',
  37. meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
  38. ]
  39. # For stuffthingmaps_semseg, please refer to
  40. # `docs/en/user_guides/dataset_prepare.md`
  41. train_dataloader = dict(
  42. batch_size=2,
  43. num_workers=2,
  44. persistent_workers=True,
  45. sampler=dict(type='DefaultSampler', shuffle=True),
  46. batch_sampler=dict(type='AspectRatioBatchSampler'),
  47. dataset=dict(
  48. type=dataset_type,
  49. data_root=data_root,
  50. data_prefix=dict(
  51. img_path='train2017/',
  52. seg_map_path='stuffthingmaps_semseg/train2017/'),
  53. pipeline=train_pipeline))
  54. val_dataloader = dict(
  55. batch_size=1,
  56. num_workers=2,
  57. persistent_workers=True,
  58. drop_last=False,
  59. sampler=dict(type='DefaultSampler', shuffle=False),
  60. dataset=dict(
  61. type=dataset_type,
  62. data_root=data_root,
  63. data_prefix=dict(
  64. img_path='val2017/',
  65. seg_map_path='stuffthingmaps_semseg/val2017/'),
  66. pipeline=test_pipeline))
  67. test_dataloader = val_dataloader
  68. val_evaluator = dict(type='SemSegMetric', iou_metrics=['mIoU'])
  69. test_evaluator = val_evaluator