isaid_instance.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # dataset settings
  2. dataset_type = 'iSAIDDataset'
  3. data_root = 'data/iSAID/'
  4. backend_args = None
  5. # Please see `projects/iSAID/README.md` for data preparation
  6. train_pipeline = [
  7. dict(type='LoadImageFromFile', backend_args=backend_args),
  8. dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
  9. dict(type='Resize', scale=(800, 800), keep_ratio=True),
  10. dict(type='RandomFlip', prob=0.5),
  11. dict(type='PackDetInputs')
  12. ]
  13. test_pipeline = [
  14. dict(type='LoadImageFromFile', backend_args=backend_args),
  15. dict(type='Resize', scale=(800, 800), keep_ratio=True),
  16. dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
  17. dict(
  18. type='PackDetInputs',
  19. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
  20. 'scale_factor'))
  21. ]
  22. train_dataloader = dict(
  23. batch_size=2,
  24. num_workers=2,
  25. persistent_workers=True,
  26. sampler=dict(type='DefaultSampler', shuffle=True),
  27. batch_sampler=dict(type='AspectRatioBatchSampler'),
  28. dataset=dict(
  29. type=dataset_type,
  30. data_root=data_root,
  31. ann_file='train/instancesonly_filtered_train.json',
  32. data_prefix=dict(img='train/images/'),
  33. filter_cfg=dict(filter_empty_gt=True, min_size=32),
  34. pipeline=train_pipeline,
  35. backend_args=backend_args))
  36. val_dataloader = dict(
  37. batch_size=1,
  38. num_workers=2,
  39. persistent_workers=True,
  40. drop_last=False,
  41. sampler=dict(type='DefaultSampler', shuffle=False),
  42. dataset=dict(
  43. type=dataset_type,
  44. data_root=data_root,
  45. ann_file='val/instancesonly_filtered_val.json',
  46. data_prefix=dict(img='val/images/'),
  47. test_mode=True,
  48. pipeline=test_pipeline,
  49. backend_args=backend_args))
  50. test_dataloader = val_dataloader
  51. val_evaluator = dict(
  52. type='CocoMetric',
  53. ann_file=data_root + 'val/instancesonly_filtered_val.json',
  54. metric=['bbox', 'segm'],
  55. format_only=False,
  56. backend_args=backend_args)
  57. test_evaluator = val_evaluator