rtmdet_s_8xb32-300e_coco.py 2.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
  1. _base_ = './rtmdet_l_8xb32-300e_coco.py'
  2. checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-s_imagenet_600e.pth' # noqa
  3. model = dict(
  4. backbone=dict(
  5. deepen_factor=0.33,
  6. widen_factor=0.5,
  7. # init_cfg=dict(
  8. # type='Pretrained', prefix='backbone.', checkpoint=checkpoint)
  9. ),
  10. neck=dict(in_channels=[128, 256, 512], out_channels=128, num_csp_blocks=1),
  11. bbox_head=dict(in_channels=128, feat_channels=128, exp_on_reg=False))
  12. train_pipeline = [
  13. dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
  14. dict(type='LoadAnnotations', with_bbox=True),
  15. dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
  16. dict(
  17. type='RandomResize',
  18. scale=(1280, 1280),
  19. ratio_range=(0.5, 2.0),
  20. keep_ratio=True),
  21. dict(type='RandomCrop', crop_size=(640, 640)),
  22. dict(type='YOLOXHSVRandomAug'),
  23. dict(type='RandomFlip', prob=0.5),
  24. dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
  25. dict(
  26. type='CachedMixUp',
  27. img_scale=(640, 640),
  28. ratio_range=(1.0, 1.0),
  29. max_cached_images=20,
  30. pad_val=(114, 114, 114)),
  31. dict(type='PackDetInputs')
  32. ]
  33. train_pipeline_stage2 = [
  34. dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
  35. dict(type='LoadAnnotations', with_bbox=True),
  36. dict(
  37. type='RandomResize',
  38. scale=(640, 640),
  39. ratio_range=(0.5, 2.0),
  40. keep_ratio=True),
  41. dict(type='RandomCrop', crop_size=(640, 640)),
  42. dict(type='YOLOXHSVRandomAug'),
  43. dict(type='RandomFlip', prob=0.5),
  44. dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
  45. dict(type='PackDetInputs')
  46. ]
  47. train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
  48. custom_hooks = [
  49. dict(
  50. type='EMAHook',
  51. ema_type='ExpMomentumEMA',
  52. momentum=0.0002,
  53. update_buffers=True,
  54. priority=49),
  55. dict(
  56. type='PipelineSwitchHook',
  57. switch_epoch=280,
  58. switch_pipeline=train_pipeline_stage2)
  59. ]