rtmdet_tiny_8xb32-300e_coco.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344
  1. _base_ = './rtmdet_s_8xb32-300e_coco.py'
  2. checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
  3. model = dict(
  4. backbone=dict(
  5. deepen_factor=0.167,
  6. widen_factor=0.375,
  7. # init_cfg=dict(
  8. # type='Pretrained', prefix='backbone.', checkpoint=checkpoint)
  9. ),
  10. neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1),
  11. bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False))
  12. train_pipeline = [
  13. dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
  14. dict(type='LoadAnnotations', with_bbox=True),
  15. dict(
  16. type='CachedMosaic',
  17. img_scale=(640, 640),
  18. pad_val=114.0,
  19. max_cached_images=20,
  20. random_pop=False),
  21. dict(
  22. type='RandomResize',
  23. scale=(1280, 1280),
  24. ratio_range=(0.5, 2.0),
  25. keep_ratio=True),
  26. dict(type='RandomCrop', crop_size=(640, 640)),
  27. dict(type='YOLOXHSVRandomAug'),
  28. dict(type='RandomFlip', prob=0.5),
  29. dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
  30. dict(
  31. type='CachedMixUp',
  32. img_scale=(640, 640),
  33. ratio_range=(1.0, 1.0),
  34. max_cached_images=10,
  35. random_pop=False,
  36. pad_val=(114, 114, 114),
  37. prob=0.5),
  38. dict(type='PackDetInputs')
  39. ]
  40. train_dataloader = dict(dataset=dict(pipeline=train_pipeline))