123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354 |
- _base_ = './yolox_s_8xb8-300e_coco.py'
- # model settings
- model = dict(
- data_preprocessor=dict(batch_augments=[
- dict(
- type='BatchSyncRandomResize',
- random_size_range=(320, 640),
- size_divisor=32,
- interval=10)
- ]),
- backbone=dict(deepen_factor=0.33, widen_factor=0.375),
- neck=dict(in_channels=[96, 192, 384], out_channels=96),
- bbox_head=dict(in_channels=96, feat_channels=96))
- img_scale = (640, 640) # width, height
- train_pipeline = [
- dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
- dict(
- type='RandomAffine',
- scaling_ratio_range=(0.5, 1.5),
- # img_scale is (width, height)
- border=(-img_scale[0] // 2, -img_scale[1] // 2)),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- # Resize and Pad are for the last 15 epochs when Mosaic and
- # RandomAffine are closed by YOLOXModeSwitchHook.
- dict(type='Resize', scale=img_scale, keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='Resize', scale=(416, 416), keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
|