123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from mmcv.transforms.loading import LoadImageFromFile
- from mmengine.dataset.sampler import DefaultSampler
- from mmdet.datasets.coco import CocoDataset
- from mmdet.datasets.samplers.batch_sampler import AspectRatioBatchSampler
- from mmdet.datasets.transforms.formatting import PackDetInputs
- from mmdet.datasets.transforms.loading import LoadAnnotations
- from mmdet.datasets.transforms.transforms import RandomFlip, Resize
- from mmdet.evaluation.metrics.coco_metric import CocoMetric
- # dataset settings
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type=LoadImageFromFile, backend_args=backend_args),
- dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
- dict(type=Resize, scale=(1333, 800), keep_ratio=True),
- dict(type=RandomFlip, prob=0.5),
- dict(type=PackDetInputs)
- ]
- test_pipeline = [
- dict(type=LoadImageFromFile, backend_args=backend_args),
- dict(type=Resize, scale=(1333, 800), keep_ratio=True),
- # If you don't have a gt annotation, delete the pipeline
- dict(type=LoadAnnotations, with_bbox=True, with_mask=True),
- dict(
- type=PackDetInputs,
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=2,
- num_workers=2,
- persistent_workers=True,
- sampler=dict(type=DefaultSampler, shuffle=True),
- batch_sampler=dict(type=AspectRatioBatchSampler),
- dataset=dict(
- type=CocoDataset,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=train_pipeline,
- backend_args=backend_args))
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type=DefaultSampler, shuffle=False),
- dataset=dict(
- type=CocoDataset,
- data_root=data_root,
- ann_file='annotations/instances_val2017.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type=CocoMetric,
- ann_file=data_root + 'annotations/instances_val2017.json',
- metric=['bbox', 'segm'],
- format_only=False,
- backend_args=backend_args)
- test_evaluator = val_evaluator
- # inference on test dataset and
- # format the output results for submission.
- # test_dataloader = dict(
- # batch_size=1,
- # num_workers=2,
- # persistent_workers=True,
- # drop_last=False,
- # sampler=dict(type=DefaultSampler, shuffle=False),
- # dataset=dict(
- # type=CocoDataset,
- # data_root=data_root,
- # ann_file=data_root + 'annotations/image_info_test-dev2017.json',
- # data_prefix=dict(img='test2017/'),
- # test_mode=True,
- # pipeline=test_pipeline))
- # test_evaluator = dict(
- # type=CocoMetric,
- # metric=['bbox', 'segm'],
- # format_only=True,
- # ann_file=data_root + 'annotations/image_info_test-dev2017.json',
- # outfile_prefix='./work_dirs/coco_instance/test')
|