123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import warnings
- import numpy as np
- import torch.nn as nn
- from mmcv.cnn import build_conv_layer, build_norm_layer
- from mmdet.registry import MODELS
- from .resnet import ResNet
- from .resnext import Bottleneck
- @MODELS.register_module()
- class RegNet(ResNet):
- """RegNet backbone.
- More details can be found in `paper <https://arxiv.org/abs/2003.13678>`_ .
- Args:
- arch (dict): The parameter of RegNets.
- - w0 (int): initial width
- - wa (float): slope of width
- - wm (float): quantization parameter to quantize the width
- - depth (int): depth of the backbone
- - group_w (int): width of group
- - bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
- strides (Sequence[int]): Strides of the first block of each stage.
- base_channels (int): Base channels after stem layer.
- in_channels (int): Number of input image channels. Default: 3.
- dilations (Sequence[int]): Dilation of each stage.
- out_indices (Sequence[int]): Output from which stages.
- style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
- layer is the 3x3 conv layer, otherwise the stride-two layer is
- the first 1x1 conv layer.
- frozen_stages (int): Stages to be frozen (all param fixed). -1 means
- not freezing any parameters.
- norm_cfg (dict): dictionary to construct and config norm layer.
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only.
- with_cp (bool): Use checkpoint or not. Using checkpoint will save some
- memory while slowing down the training speed.
- zero_init_residual (bool): whether to use zero init for last norm layer
- in resblocks to let them behave as identity.
- pretrained (str, optional): model pretrained path. Default: None
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None
- Example:
- >>> from mmdet.models import RegNet
- >>> import torch
- >>> self = RegNet(
- arch=dict(
- w0=88,
- wa=26.31,
- wm=2.25,
- group_w=48,
- depth=25,
- bot_mul=1.0))
- >>> self.eval()
- >>> inputs = torch.rand(1, 3, 32, 32)
- >>> level_outputs = self.forward(inputs)
- >>> for level_out in level_outputs:
- ... print(tuple(level_out.shape))
- (1, 96, 8, 8)
- (1, 192, 4, 4)
- (1, 432, 2, 2)
- (1, 1008, 1, 1)
- """
- arch_settings = {
- 'regnetx_400mf':
- dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22, bot_mul=1.0),
- 'regnetx_800mf':
- dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16, bot_mul=1.0),
- 'regnetx_1.6gf':
- dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18, bot_mul=1.0),
- 'regnetx_3.2gf':
- dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0),
- 'regnetx_4.0gf':
- dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23, bot_mul=1.0),
- 'regnetx_6.4gf':
- dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17, bot_mul=1.0),
- 'regnetx_8.0gf':
- dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23, bot_mul=1.0),
- 'regnetx_12gf':
- dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19, bot_mul=1.0),
- }
- def __init__(self,
- arch,
- in_channels=3,
- stem_channels=32,
- base_channels=32,
- strides=(2, 2, 2, 2),
- dilations=(1, 1, 1, 1),
- out_indices=(0, 1, 2, 3),
- style='pytorch',
- deep_stem=False,
- avg_down=False,
- frozen_stages=-1,
- conv_cfg=None,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- dcn=None,
- stage_with_dcn=(False, False, False, False),
- plugins=None,
- with_cp=False,
- zero_init_residual=True,
- pretrained=None,
- init_cfg=None):
- super(ResNet, self).__init__(init_cfg)
- # Generate RegNet parameters first
- if isinstance(arch, str):
- assert arch in self.arch_settings, \
- f'"arch": "{arch}" is not one of the' \
- ' arch_settings'
- arch = self.arch_settings[arch]
- elif not isinstance(arch, dict):
- raise ValueError('Expect "arch" to be either a string '
- f'or a dict, got {type(arch)}')
- widths, num_stages = self.generate_regnet(
- arch['w0'],
- arch['wa'],
- arch['wm'],
- arch['depth'],
- )
- # Convert to per stage format
- stage_widths, stage_blocks = self.get_stages_from_blocks(widths)
- # Generate group widths and bot muls
- group_widths = [arch['group_w'] for _ in range(num_stages)]
- self.bottleneck_ratio = [arch['bot_mul'] for _ in range(num_stages)]
- # Adjust the compatibility of stage_widths and group_widths
- stage_widths, group_widths = self.adjust_width_group(
- stage_widths, self.bottleneck_ratio, group_widths)
- # Group params by stage
- self.stage_widths = stage_widths
- self.group_widths = group_widths
- self.depth = sum(stage_blocks)
- self.stem_channels = stem_channels
- self.base_channels = base_channels
- self.num_stages = num_stages
- assert num_stages >= 1 and num_stages <= 4
- self.strides = strides
- self.dilations = dilations
- assert len(strides) == len(dilations) == num_stages
- self.out_indices = out_indices
- assert max(out_indices) < num_stages
- self.style = style
- self.deep_stem = deep_stem
- self.avg_down = avg_down
- self.frozen_stages = frozen_stages
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.with_cp = with_cp
- self.norm_eval = norm_eval
- self.dcn = dcn
- self.stage_with_dcn = stage_with_dcn
- if dcn is not None:
- assert len(stage_with_dcn) == num_stages
- self.plugins = plugins
- self.zero_init_residual = zero_init_residual
- self.block = Bottleneck
- expansion_bak = self.block.expansion
- self.block.expansion = 1
- self.stage_blocks = stage_blocks[:num_stages]
- self._make_stem_layer(in_channels, stem_channels)
- block_init_cfg = None
- assert not (init_cfg and pretrained), \
- 'init_cfg and pretrained cannot be specified at the same time'
- if isinstance(pretrained, str):
- warnings.warn('DeprecationWarning: pretrained is deprecated, '
- 'please use "init_cfg" instead')
- self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
- elif pretrained is None:
- if init_cfg is None:
- self.init_cfg = [
- dict(type='Kaiming', layer='Conv2d'),
- dict(
- type='Constant',
- val=1,
- layer=['_BatchNorm', 'GroupNorm'])
- ]
- if self.zero_init_residual:
- block_init_cfg = dict(
- type='Constant', val=0, override=dict(name='norm3'))
- else:
- raise TypeError('pretrained must be a str or None')
- self.inplanes = stem_channels
- self.res_layers = []
- for i, num_blocks in enumerate(self.stage_blocks):
- stride = self.strides[i]
- dilation = self.dilations[i]
- group_width = self.group_widths[i]
- width = int(round(self.stage_widths[i] * self.bottleneck_ratio[i]))
- stage_groups = width // group_width
- dcn = self.dcn if self.stage_with_dcn[i] else None
- if self.plugins is not None:
- stage_plugins = self.make_stage_plugins(self.plugins, i)
- else:
- stage_plugins = None
- res_layer = self.make_res_layer(
- block=self.block,
- inplanes=self.inplanes,
- planes=self.stage_widths[i],
- num_blocks=num_blocks,
- stride=stride,
- dilation=dilation,
- style=self.style,
- avg_down=self.avg_down,
- with_cp=self.with_cp,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- dcn=dcn,
- plugins=stage_plugins,
- groups=stage_groups,
- base_width=group_width,
- base_channels=self.stage_widths[i],
- init_cfg=block_init_cfg)
- self.inplanes = self.stage_widths[i]
- layer_name = f'layer{i + 1}'
- self.add_module(layer_name, res_layer)
- self.res_layers.append(layer_name)
- self._freeze_stages()
- self.feat_dim = stage_widths[-1]
- self.block.expansion = expansion_bak
- def _make_stem_layer(self, in_channels, base_channels):
- self.conv1 = build_conv_layer(
- self.conv_cfg,
- in_channels,
- base_channels,
- kernel_size=3,
- stride=2,
- padding=1,
- bias=False)
- self.norm1_name, norm1 = build_norm_layer(
- self.norm_cfg, base_channels, postfix=1)
- self.add_module(self.norm1_name, norm1)
- self.relu = nn.ReLU(inplace=True)
- def generate_regnet(self,
- initial_width,
- width_slope,
- width_parameter,
- depth,
- divisor=8):
- """Generates per block width from RegNet parameters.
- Args:
- initial_width ([int]): Initial width of the backbone
- width_slope ([float]): Slope of the quantized linear function
- width_parameter ([int]): Parameter used to quantize the width.
- depth ([int]): Depth of the backbone.
- divisor (int, optional): The divisor of channels. Defaults to 8.
- Returns:
- list, int: return a list of widths of each stage and the number \
- of stages
- """
- assert width_slope >= 0
- assert initial_width > 0
- assert width_parameter > 1
- assert initial_width % divisor == 0
- widths_cont = np.arange(depth) * width_slope + initial_width
- ks = np.round(
- np.log(widths_cont / initial_width) / np.log(width_parameter))
- widths = initial_width * np.power(width_parameter, ks)
- widths = np.round(np.divide(widths, divisor)) * divisor
- num_stages = len(np.unique(widths))
- widths, widths_cont = widths.astype(int).tolist(), widths_cont.tolist()
- return widths, num_stages
- @staticmethod
- def quantize_float(number, divisor):
- """Converts a float to closest non-zero int divisible by divisor.
- Args:
- number (int): Original number to be quantized.
- divisor (int): Divisor used to quantize the number.
- Returns:
- int: quantized number that is divisible by devisor.
- """
- return int(round(number / divisor) * divisor)
- def adjust_width_group(self, widths, bottleneck_ratio, groups):
- """Adjusts the compatibility of widths and groups.
- Args:
- widths (list[int]): Width of each stage.
- bottleneck_ratio (float): Bottleneck ratio.
- groups (int): number of groups in each stage
- Returns:
- tuple(list): The adjusted widths and groups of each stage.
- """
- bottleneck_width = [
- int(w * b) for w, b in zip(widths, bottleneck_ratio)
- ]
- groups = [min(g, w_bot) for g, w_bot in zip(groups, bottleneck_width)]
- bottleneck_width = [
- self.quantize_float(w_bot, g)
- for w_bot, g in zip(bottleneck_width, groups)
- ]
- widths = [
- int(w_bot / b)
- for w_bot, b in zip(bottleneck_width, bottleneck_ratio)
- ]
- return widths, groups
- def get_stages_from_blocks(self, widths):
- """Gets widths/stage_blocks of network at each stage.
- Args:
- widths (list[int]): Width in each stage.
- Returns:
- tuple(list): width and depth of each stage
- """
- width_diff = [
- width != width_prev
- for width, width_prev in zip(widths + [0], [0] + widths)
- ]
- stage_widths = [
- width for width, diff in zip(widths, width_diff[:-1]) if diff
- ]
- stage_blocks = np.diff([
- depth for depth, diff in zip(range(len(width_diff)), width_diff)
- if diff
- ]).tolist()
- return stage_widths, stage_blocks
- def forward(self, x):
- """Forward function."""
- x = self.conv1(x)
- x = self.norm1(x)
- x = self.relu(x)
- outs = []
- for i, layer_name in enumerate(self.res_layers):
- res_layer = getattr(self, layer_name)
- x = res_layer(x)
- if i in self.out_indices:
- outs.append(x)
- return tuple(outs)
|