123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 |
- import torch
- import torchvision.ops._box_convert as box_op
- from mmdet.models.layers.transformer.utils import inverse_sigmoid
- def get_contrastive_denoising_training_group\
- (targets,
- num_classes,
- num_queries,
- class_embed,
- num_denoising=100,
- label_noise_ratio=0.5,
- box_noise_scale=1.0,):
-
- if num_denoising <= 0:
- return None, None, None, None
-
- num_gts = [len(t['labels']) for t in targets]
- device = targets[0]['labels'].device
-
- max_gt_num = max(num_gts)
- if max_gt_num == 0:
- return None, None, None, None
- num_group = num_denoising // max_gt_num
- num_group = 1 if num_group == 0 else num_group
- # pad gt to max_num of a batch
- bs = len(num_gts)
- input_query_class = torch.full([bs, max_gt_num], num_classes, dtype=torch.int32, device=device)
- input_query_bbox = torch.zeros([bs, max_gt_num, 4], device=device)
- pad_gt_mask = torch.zeros([bs, max_gt_num], dtype=torch.bool, device=device)
- for i in range(bs):
- num_gt = num_gts[i]
- if num_gt > 0:
- input_query_class[i, :num_gt] = targets[i]['labels']
- input_query_bbox[i, :num_gt] = targets[i]['boxes']
- pad_gt_mask[i, :num_gt] = 1
- # each group has positive and negative queries.
- input_query_class = input_query_class.tile([1, 2 * num_group])
- input_query_bbox = input_query_bbox.tile([1, 2 * num_group, 1])
- pad_gt_mask = pad_gt_mask.tile([1, 2 * num_group])
- # positive and negative mask
- negative_gt_mask = torch.zeros([bs, max_gt_num * 2, 1], device=device)
- negative_gt_mask[:, max_gt_num:] = 1
- negative_gt_mask = negative_gt_mask.tile([1, num_group, 1])
- positive_gt_mask = 1 - negative_gt_mask
- # contrastive denoising training positive index
- positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
- dn_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
- dn_positive_idx = torch.split(dn_positive_idx, [n * num_group for n in num_gts])
- # total denoising queries
- num_denoising = int(max_gt_num * 2 * num_group)
- if label_noise_ratio > 0:
- mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
- # randomly put a new one here
- new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
- input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
- # if label_noise_ratio > 0:
- # input_query_class = input_query_class.flatten()
- # pad_gt_mask = pad_gt_mask.flatten()
- # # half of bbox prob
- # # mask = torch.rand(input_query_class.shape, device=device) < (label_noise_ratio * 0.5)
- # mask = torch.rand_like(input_query_class) < (label_noise_ratio * 0.5)
- # chosen_idx = torch.nonzero(mask * pad_gt_mask).squeeze(-1)
- # # randomly put a new one here
- # new_label = torch.randint_like(chosen_idx, 0, num_classes, dtype=input_query_class.dtype)
- # # input_query_class.scatter_(dim=0, index=chosen_idx, value=new_label)
- # input_query_class[chosen_idx] = new_label
- # input_query_class = input_query_class.reshape(bs, num_denoising)
- # pad_gt_mask = pad_gt_mask.reshape(bs, num_denoising)
- if box_noise_scale > 0:
- known_bbox=box_op._box_cxcywh_to_xyxy(input_query_bbox)
- diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
- rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
- rand_part = torch.rand_like(input_query_bbox)
- rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
- rand_part *= rand_sign
- known_bbox += rand_part * diff
- known_bbox.clip_(min=0.0, max=1.0)
- input_query_bbox=box_op._box_xyxy_to_cxcywh(known_bbox)
- input_query_bbox = inverse_sigmoid(input_query_bbox)
- # class_embed = torch.concat([class_embed, torch.zeros([1, class_embed.shape[-1]], device=device)])
- # input_query_class = torch.gather(
- # class_embed, input_query_class.flatten(),
- # axis=0).reshape(bs, num_denoising, -1)
- # input_query_class = class_embed(input_query_class.flatten()).reshape(bs, num_denoising, -1)
- input_query_class = class_embed(input_query_class)
- tgt_size = num_denoising + num_queries
- # attn_mask = torch.ones([tgt_size, tgt_size], device=device) < 0
- attn_mask = torch.full([tgt_size, tgt_size], False, dtype=torch.bool, device=device)
- # match query cannot see the reconstruction
- attn_mask[num_denoising:, :num_denoising] = True
-
- # reconstruct cannot see each other
- for i in range(num_group):
- if i == 0:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
- if i == num_group - 1:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * i * 2] = True
- else:
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), max_gt_num * 2 * (i + 1): num_denoising] = True
- attn_mask[max_gt_num * 2 * i: max_gt_num * 2 * (i + 1), :max_gt_num * 2 * i] = True
-
- dn_meta = {
- "dn_positive_idx": dn_positive_idx,
- "dn_num_group": num_group,
- "dn_num_split": [num_denoising, num_queries]
- }
- # print(input_query_class.shape) # torch.Size([4, 196, 256])
- # print(input_query_bbox.shape) # torch.Size([4, 196, 4])
- # print(attn_mask.shape) # torch.Size([496, 496])
-
- return input_query_class, input_query_bbox, attn_mask, dn_meta
|