123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Optional
- from mmengine.model import BaseModule
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.structures import TrackSampleList
- from mmdet.structures.bbox import bbox2roi
- from mmdet.utils import InstanceList
- @MODELS.register_module()
- class QuasiDenseTrackHead(BaseModule):
- """The quasi-dense track head."""
- def __init__(self,
- roi_extractor: Optional[dict] = None,
- embed_head: Optional[dict] = None,
- regress_head: Optional[dict] = None,
- train_cfg: Optional[dict] = None,
- test_cfg: Optional[dict] = None,
- init_cfg: Optional[dict] = None,
- **kwargs):
- super().__init__(init_cfg=init_cfg)
- self.train_cfg = train_cfg
- self.test_cfg = test_cfg
- if embed_head is not None:
- self.init_embed_head(roi_extractor, embed_head)
- if regress_head is not None:
- raise NotImplementedError('Regression head is not supported yet.')
- self.init_assigner_sampler()
- def init_embed_head(self, roi_extractor, embed_head) -> None:
- """Initialize ``embed_head``
- Args:
- roi_extractor (dict, optional): Configuration of roi extractor.
- Defaults to None.
- embed_head (dict, optional): Configuration of embed head. Defaults
- to None.
- """
- self.roi_extractor = MODELS.build(roi_extractor)
- self.embed_head = MODELS.build(embed_head)
- def init_assigner_sampler(self) -> None:
- """Initialize assigner and sampler."""
- self.bbox_assigner = None
- self.bbox_sampler = None
- if self.train_cfg:
- self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
- self.bbox_sampler = TASK_UTILS.build(
- self.train_cfg.sampler, default_args=dict(context=self))
- @property
- def with_track(self) -> bool:
- """bool: whether the multi-object tracker has an embed head"""
- return hasattr(self, 'embed_head') and self.embed_head is not None
- def extract_roi_feats(self, feats: List[Tensor],
- bboxes: List[Tensor]) -> Tensor:
- """Extract roi features.
- Args:
- feats (list[Tensor]): list of multi-level image features.
- bboxes (list[Tensor]): list of bboxes in sampling result.
- Returns:
- Tensor: The extracted roi features.
- """
- rois = bbox2roi(bboxes)
- bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
- rois)
- return bbox_feats
- def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
- rpn_results_list: InstanceList,
- ref_rpn_results_list: InstanceList, data_samples: TrackSampleList,
- **kwargs) -> dict:
- """Calculate losses from a batch of inputs and data samples.
- Args:
- key_feats (list[Tensor]): list of multi-level image features.
- ref_feats (list[Tensor]): list of multi-level ref_img features.
- rpn_results_list (list[:obj:`InstanceData`]): List of region
- proposals of key img.
- ref_rpn_results_list (list[:obj:`InstanceData`]): List of region
- proposals of ref img.
- data_samples (list[:obj:`TrackDataSample`]): The batch
- data samples. It usually includes information such
- as `gt_instance`.
- Returns:
- dict: A dictionary of loss components.
- """
- assert self.with_track
- num_imgs = len(data_samples)
- batch_gt_instances = []
- ref_batch_gt_instances = []
- batch_gt_instances_ignore = []
- gt_match_indices_list = []
- for track_data_sample in data_samples:
- key_data_sample = track_data_sample.get_key_frames()[0]
- ref_data_sample = track_data_sample.get_ref_frames()[0]
- batch_gt_instances.append(key_data_sample.gt_instances)
- ref_batch_gt_instances.append(ref_data_sample.gt_instances)
- if 'ignored_instances' in key_data_sample:
- batch_gt_instances_ignore.append(
- key_data_sample.ignored_instances)
- else:
- batch_gt_instances_ignore.append(None)
- # get gt_match_indices
- ins_ids = key_data_sample.gt_instances.instances_ids.tolist()
- ref_ins_ids = ref_data_sample.gt_instances.instances_ids.tolist()
- match_indices = Tensor([
- ref_ins_ids.index(i) if (i in ref_ins_ids and i > 0) else -1
- for i in ins_ids
- ]).to(key_feats[0].device)
- gt_match_indices_list.append(match_indices)
- key_sampling_results, ref_sampling_results = [], []
- for i in range(num_imgs):
- rpn_results = rpn_results_list[i]
- ref_rpn_results = ref_rpn_results_list[i]
- # rename ref_rpn_results.bboxes to ref_rpn_results.priors
- ref_rpn_results.priors = ref_rpn_results.pop('bboxes')
- assign_result = self.bbox_assigner.assign(
- rpn_results, batch_gt_instances[i],
- batch_gt_instances_ignore[i])
- sampling_result = self.bbox_sampler.sample(
- assign_result,
- rpn_results,
- batch_gt_instances[i],
- feats=[lvl_feat[i][None] for lvl_feat in key_feats])
- key_sampling_results.append(sampling_result)
- ref_assign_result = self.bbox_assigner.assign(
- ref_rpn_results, ref_batch_gt_instances[i],
- batch_gt_instances_ignore[i])
- ref_sampling_result = self.bbox_sampler.sample(
- ref_assign_result,
- ref_rpn_results,
- ref_batch_gt_instances[i],
- feats=[lvl_feat[i][None] for lvl_feat in ref_feats])
- ref_sampling_results.append(ref_sampling_result)
- key_bboxes = [res.pos_bboxes for res in key_sampling_results]
- key_roi_feats = self.extract_roi_feats(key_feats, key_bboxes)
- ref_bboxes = [res.bboxes for res in ref_sampling_results]
- ref_roi_feats = self.extract_roi_feats(ref_feats, ref_bboxes)
- loss_track = self.embed_head.loss(key_roi_feats, ref_roi_feats,
- key_sampling_results,
- ref_sampling_results,
- gt_match_indices_list)
- return loss_track
- def predict(self, feats: List[Tensor],
- rescaled_bboxes: List[Tensor]) -> Tensor:
- """Perform forward propagation of the tracking head and predict
- tracking results on the features of the upstream network.
- Args:
- feats (list[Tensor]): Multi level feature maps of `img`.
- rescaled_bboxes (list[Tensor]): list of rescaled bboxes in sampling
- result.
- Returns:
- Tensor: The extracted track features.
- """
- bbox_feats = self.extract_roi_feats(feats, rescaled_bboxes)
- track_feats = self.embed_head.predict(bbox_feats)
- return track_feats
|