quasi_dense_track_head.py 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from typing import List, Optional
  3. from mmengine.model import BaseModule
  4. from torch import Tensor
  5. from mmdet.registry import MODELS, TASK_UTILS
  6. from mmdet.structures import TrackSampleList
  7. from mmdet.structures.bbox import bbox2roi
  8. from mmdet.utils import InstanceList
  9. @MODELS.register_module()
  10. class QuasiDenseTrackHead(BaseModule):
  11. """The quasi-dense track head."""
  12. def __init__(self,
  13. roi_extractor: Optional[dict] = None,
  14. embed_head: Optional[dict] = None,
  15. regress_head: Optional[dict] = None,
  16. train_cfg: Optional[dict] = None,
  17. test_cfg: Optional[dict] = None,
  18. init_cfg: Optional[dict] = None,
  19. **kwargs):
  20. super().__init__(init_cfg=init_cfg)
  21. self.train_cfg = train_cfg
  22. self.test_cfg = test_cfg
  23. if embed_head is not None:
  24. self.init_embed_head(roi_extractor, embed_head)
  25. if regress_head is not None:
  26. raise NotImplementedError('Regression head is not supported yet.')
  27. self.init_assigner_sampler()
  28. def init_embed_head(self, roi_extractor, embed_head) -> None:
  29. """Initialize ``embed_head``
  30. Args:
  31. roi_extractor (dict, optional): Configuration of roi extractor.
  32. Defaults to None.
  33. embed_head (dict, optional): Configuration of embed head. Defaults
  34. to None.
  35. """
  36. self.roi_extractor = MODELS.build(roi_extractor)
  37. self.embed_head = MODELS.build(embed_head)
  38. def init_assigner_sampler(self) -> None:
  39. """Initialize assigner and sampler."""
  40. self.bbox_assigner = None
  41. self.bbox_sampler = None
  42. if self.train_cfg:
  43. self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
  44. self.bbox_sampler = TASK_UTILS.build(
  45. self.train_cfg.sampler, default_args=dict(context=self))
  46. @property
  47. def with_track(self) -> bool:
  48. """bool: whether the multi-object tracker has an embed head"""
  49. return hasattr(self, 'embed_head') and self.embed_head is not None
  50. def extract_roi_feats(self, feats: List[Tensor],
  51. bboxes: List[Tensor]) -> Tensor:
  52. """Extract roi features.
  53. Args:
  54. feats (list[Tensor]): list of multi-level image features.
  55. bboxes (list[Tensor]): list of bboxes in sampling result.
  56. Returns:
  57. Tensor: The extracted roi features.
  58. """
  59. rois = bbox2roi(bboxes)
  60. bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
  61. rois)
  62. return bbox_feats
  63. def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
  64. rpn_results_list: InstanceList,
  65. ref_rpn_results_list: InstanceList, data_samples: TrackSampleList,
  66. **kwargs) -> dict:
  67. """Calculate losses from a batch of inputs and data samples.
  68. Args:
  69. key_feats (list[Tensor]): list of multi-level image features.
  70. ref_feats (list[Tensor]): list of multi-level ref_img features.
  71. rpn_results_list (list[:obj:`InstanceData`]): List of region
  72. proposals of key img.
  73. ref_rpn_results_list (list[:obj:`InstanceData`]): List of region
  74. proposals of ref img.
  75. data_samples (list[:obj:`TrackDataSample`]): The batch
  76. data samples. It usually includes information such
  77. as `gt_instance`.
  78. Returns:
  79. dict: A dictionary of loss components.
  80. """
  81. assert self.with_track
  82. num_imgs = len(data_samples)
  83. batch_gt_instances = []
  84. ref_batch_gt_instances = []
  85. batch_gt_instances_ignore = []
  86. gt_match_indices_list = []
  87. for track_data_sample in data_samples:
  88. key_data_sample = track_data_sample.get_key_frames()[0]
  89. ref_data_sample = track_data_sample.get_ref_frames()[0]
  90. batch_gt_instances.append(key_data_sample.gt_instances)
  91. ref_batch_gt_instances.append(ref_data_sample.gt_instances)
  92. if 'ignored_instances' in key_data_sample:
  93. batch_gt_instances_ignore.append(
  94. key_data_sample.ignored_instances)
  95. else:
  96. batch_gt_instances_ignore.append(None)
  97. # get gt_match_indices
  98. ins_ids = key_data_sample.gt_instances.instances_ids.tolist()
  99. ref_ins_ids = ref_data_sample.gt_instances.instances_ids.tolist()
  100. match_indices = Tensor([
  101. ref_ins_ids.index(i) if (i in ref_ins_ids and i > 0) else -1
  102. for i in ins_ids
  103. ]).to(key_feats[0].device)
  104. gt_match_indices_list.append(match_indices)
  105. key_sampling_results, ref_sampling_results = [], []
  106. for i in range(num_imgs):
  107. rpn_results = rpn_results_list[i]
  108. ref_rpn_results = ref_rpn_results_list[i]
  109. # rename ref_rpn_results.bboxes to ref_rpn_results.priors
  110. ref_rpn_results.priors = ref_rpn_results.pop('bboxes')
  111. assign_result = self.bbox_assigner.assign(
  112. rpn_results, batch_gt_instances[i],
  113. batch_gt_instances_ignore[i])
  114. sampling_result = self.bbox_sampler.sample(
  115. assign_result,
  116. rpn_results,
  117. batch_gt_instances[i],
  118. feats=[lvl_feat[i][None] for lvl_feat in key_feats])
  119. key_sampling_results.append(sampling_result)
  120. ref_assign_result = self.bbox_assigner.assign(
  121. ref_rpn_results, ref_batch_gt_instances[i],
  122. batch_gt_instances_ignore[i])
  123. ref_sampling_result = self.bbox_sampler.sample(
  124. ref_assign_result,
  125. ref_rpn_results,
  126. ref_batch_gt_instances[i],
  127. feats=[lvl_feat[i][None] for lvl_feat in ref_feats])
  128. ref_sampling_results.append(ref_sampling_result)
  129. key_bboxes = [res.pos_bboxes for res in key_sampling_results]
  130. key_roi_feats = self.extract_roi_feats(key_feats, key_bboxes)
  131. ref_bboxes = [res.bboxes for res in ref_sampling_results]
  132. ref_roi_feats = self.extract_roi_feats(ref_feats, ref_bboxes)
  133. loss_track = self.embed_head.loss(key_roi_feats, ref_roi_feats,
  134. key_sampling_results,
  135. ref_sampling_results,
  136. gt_match_indices_list)
  137. return loss_track
  138. def predict(self, feats: List[Tensor],
  139. rescaled_bboxes: List[Tensor]) -> Tensor:
  140. """Perform forward propagation of the tracking head and predict
  141. tracking results on the features of the upstream network.
  142. Args:
  143. feats (list[Tensor]): Multi level feature maps of `img`.
  144. rescaled_bboxes (list[Tensor]): list of rescaled bboxes in sampling
  145. result.
  146. Returns:
  147. Tensor: The extracted track features.
  148. """
  149. bbox_feats = self.extract_roi_feats(feats, rescaled_bboxes)
  150. track_feats = self.embed_head.predict(bbox_feats)
  151. return track_feats