roi_track_head.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from abc import ABCMeta
  3. from typing import List, Optional, Tuple
  4. from mmengine.model import BaseModule
  5. from torch import Tensor
  6. from mmdet.registry import MODELS, TASK_UTILS
  7. from mmdet.structures import TrackSampleList
  8. from mmdet.structures.bbox import bbox2roi
  9. from mmdet.utils import InstanceList
  10. @MODELS.register_module()
  11. class RoITrackHead(BaseModule, metaclass=ABCMeta):
  12. """The roi track head.
  13. This module is used in multi-object tracking methods, such as MaskTrack
  14. R-CNN.
  15. Args:
  16. roi_extractor (dict): Configuration of roi extractor. Defaults to None.
  17. embed_head (dict): Configuration of embed head. Defaults to None.
  18. train_cfg (dict): Configuration when training. Defaults to None.
  19. test_cfg (dict): Configuration when testing. Defaults to None.
  20. init_cfg (dict): Configuration of initialization. Defaults to None.
  21. """
  22. def __init__(self,
  23. roi_extractor: Optional[dict] = None,
  24. embed_head: Optional[dict] = None,
  25. regress_head: Optional[dict] = None,
  26. train_cfg: Optional[dict] = None,
  27. test_cfg: Optional[dict] = None,
  28. init_cfg: Optional[dict] = None,
  29. *args,
  30. **kwargs):
  31. super().__init__(init_cfg=init_cfg)
  32. self.train_cfg = train_cfg
  33. self.test_cfg = test_cfg
  34. if embed_head is not None:
  35. self.init_embed_head(roi_extractor, embed_head)
  36. if regress_head is not None:
  37. raise NotImplementedError('Regression head is not supported yet.')
  38. self.init_assigner_sampler()
  39. def init_embed_head(self, roi_extractor, embed_head) -> None:
  40. """Initialize ``embed_head``"""
  41. self.roi_extractor = MODELS.build(roi_extractor)
  42. self.embed_head = MODELS.build(embed_head)
  43. def init_assigner_sampler(self) -> None:
  44. """Initialize assigner and sampler."""
  45. self.bbox_assigner = None
  46. self.bbox_sampler = None
  47. if self.train_cfg:
  48. self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
  49. self.bbox_sampler = TASK_UTILS.build(
  50. self.train_cfg.sampler, default_args=dict(context=self))
  51. @property
  52. def with_track(self) -> bool:
  53. """bool: whether the multi-object tracker has an embed head"""
  54. return hasattr(self, 'embed_head') and self.embed_head is not None
  55. def extract_roi_feats(
  56. self, feats: List[Tensor],
  57. bboxes: List[Tensor]) -> Tuple[Tuple[Tensor], List[int]]:
  58. """Extract roi features.
  59. Args:
  60. feats (list[Tensor]): list of multi-level image features.
  61. bboxes (list[Tensor]): list of bboxes in sampling result.
  62. Returns:
  63. tuple[tuple[Tensor], list[int]]: The extracted roi features and
  64. the number of bboxes in each image.
  65. """
  66. rois = bbox2roi(bboxes)
  67. bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
  68. rois)
  69. num_bbox_per_img = [len(bbox) for bbox in bboxes]
  70. return bbox_feats, num_bbox_per_img
  71. def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
  72. rpn_results_list: InstanceList, data_samples: TrackSampleList,
  73. **kwargs) -> dict:
  74. """Calculate losses from a batch of inputs and data samples.
  75. Args:
  76. key_feats (list[Tensor]): list of multi-level image features.
  77. ref_feats (list[Tensor]): list of multi-level ref_img features.
  78. rpn_results_list (list[:obj:`InstanceData`]): List of region
  79. proposals.
  80. data_samples (list[:obj:`TrackDataSample`]): The batch
  81. data samples. It usually includes information such
  82. as `gt_instance`.
  83. Returns:
  84. dict: A dictionary of loss components.
  85. """
  86. assert self.with_track
  87. batch_gt_instances = []
  88. ref_batch_gt_instances = []
  89. batch_gt_instances_ignore = []
  90. gt_instance_ids = []
  91. ref_gt_instance_ids = []
  92. for track_data_sample in data_samples:
  93. key_data_sample = track_data_sample.get_key_frames()[0]
  94. ref_data_sample = track_data_sample.get_ref_frames()[0]
  95. batch_gt_instances.append(key_data_sample.gt_instances)
  96. ref_batch_gt_instances.append(ref_data_sample.gt_instances)
  97. if 'ignored_instances' in key_data_sample:
  98. batch_gt_instances_ignore.append(
  99. key_data_sample.ignored_instances)
  100. else:
  101. batch_gt_instances_ignore.append(None)
  102. gt_instance_ids.append(key_data_sample.gt_instances.instances_ids)
  103. ref_gt_instance_ids.append(
  104. ref_data_sample.gt_instances.instances_ids)
  105. losses = dict()
  106. num_imgs = len(data_samples)
  107. if batch_gt_instances_ignore is None:
  108. batch_gt_instances_ignore = [None] * num_imgs
  109. sampling_results = []
  110. for i in range(num_imgs):
  111. rpn_results = rpn_results_list[i]
  112. assign_result = self.bbox_assigner.assign(
  113. rpn_results, batch_gt_instances[i],
  114. batch_gt_instances_ignore[i])
  115. sampling_result = self.bbox_sampler.sample(
  116. assign_result,
  117. rpn_results,
  118. batch_gt_instances[i],
  119. feats=[lvl_feat[i][None] for lvl_feat in key_feats])
  120. sampling_results.append(sampling_result)
  121. bboxes = [res.bboxes for res in sampling_results]
  122. bbox_feats, num_bbox_per_img = self.extract_roi_feats(
  123. key_feats, bboxes)
  124. # batch_size is 1
  125. ref_gt_bboxes = [
  126. ref_batch_gt_instance.bboxes
  127. for ref_batch_gt_instance in ref_batch_gt_instances
  128. ]
  129. ref_bbox_feats, num_bbox_per_ref_img = self.extract_roi_feats(
  130. ref_feats, ref_gt_bboxes)
  131. loss_track = self.embed_head.loss(bbox_feats, ref_bbox_feats,
  132. num_bbox_per_img,
  133. num_bbox_per_ref_img,
  134. sampling_results, gt_instance_ids,
  135. ref_gt_instance_ids)
  136. losses.update(loss_track)
  137. return losses
  138. def predict(self, roi_feats: Tensor,
  139. prev_roi_feats: Tensor) -> List[Tensor]:
  140. """Perform forward propagation of the tracking head and predict
  141. tracking results on the features of the upstream network.
  142. Args:
  143. roi_feats (Tensor): Feature map of current images rois.
  144. prev_roi_feats (Tensor): Feature map of previous images rois.
  145. Returns:
  146. list[Tensor]: The predicted similarity_logits of each pair of key
  147. image and reference image.
  148. """
  149. return self.embed_head.predict(roi_feats, prev_roi_feats)[0]