123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from abc import ABCMeta
- from typing import List, Optional, Tuple
- from mmengine.model import BaseModule
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.structures import TrackSampleList
- from mmdet.structures.bbox import bbox2roi
- from mmdet.utils import InstanceList
- @MODELS.register_module()
- class RoITrackHead(BaseModule, metaclass=ABCMeta):
- """The roi track head.
- This module is used in multi-object tracking methods, such as MaskTrack
- R-CNN.
- Args:
- roi_extractor (dict): Configuration of roi extractor. Defaults to None.
- embed_head (dict): Configuration of embed head. Defaults to None.
- train_cfg (dict): Configuration when training. Defaults to None.
- test_cfg (dict): Configuration when testing. Defaults to None.
- init_cfg (dict): Configuration of initialization. Defaults to None.
- """
- def __init__(self,
- roi_extractor: Optional[dict] = None,
- embed_head: Optional[dict] = None,
- regress_head: Optional[dict] = None,
- train_cfg: Optional[dict] = None,
- test_cfg: Optional[dict] = None,
- init_cfg: Optional[dict] = None,
- *args,
- **kwargs):
- super().__init__(init_cfg=init_cfg)
- self.train_cfg = train_cfg
- self.test_cfg = test_cfg
- if embed_head is not None:
- self.init_embed_head(roi_extractor, embed_head)
- if regress_head is not None:
- raise NotImplementedError('Regression head is not supported yet.')
- self.init_assigner_sampler()
- def init_embed_head(self, roi_extractor, embed_head) -> None:
- """Initialize ``embed_head``"""
- self.roi_extractor = MODELS.build(roi_extractor)
- self.embed_head = MODELS.build(embed_head)
- def init_assigner_sampler(self) -> None:
- """Initialize assigner and sampler."""
- self.bbox_assigner = None
- self.bbox_sampler = None
- if self.train_cfg:
- self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
- self.bbox_sampler = TASK_UTILS.build(
- self.train_cfg.sampler, default_args=dict(context=self))
- @property
- def with_track(self) -> bool:
- """bool: whether the multi-object tracker has an embed head"""
- return hasattr(self, 'embed_head') and self.embed_head is not None
- def extract_roi_feats(
- self, feats: List[Tensor],
- bboxes: List[Tensor]) -> Tuple[Tuple[Tensor], List[int]]:
- """Extract roi features.
- Args:
- feats (list[Tensor]): list of multi-level image features.
- bboxes (list[Tensor]): list of bboxes in sampling result.
- Returns:
- tuple[tuple[Tensor], list[int]]: The extracted roi features and
- the number of bboxes in each image.
- """
- rois = bbox2roi(bboxes)
- bbox_feats = self.roi_extractor(feats[:self.roi_extractor.num_inputs],
- rois)
- num_bbox_per_img = [len(bbox) for bbox in bboxes]
- return bbox_feats, num_bbox_per_img
- def loss(self, key_feats: List[Tensor], ref_feats: List[Tensor],
- rpn_results_list: InstanceList, data_samples: TrackSampleList,
- **kwargs) -> dict:
- """Calculate losses from a batch of inputs and data samples.
- Args:
- key_feats (list[Tensor]): list of multi-level image features.
- ref_feats (list[Tensor]): list of multi-level ref_img features.
- rpn_results_list (list[:obj:`InstanceData`]): List of region
- proposals.
- data_samples (list[:obj:`TrackDataSample`]): The batch
- data samples. It usually includes information such
- as `gt_instance`.
- Returns:
- dict: A dictionary of loss components.
- """
- assert self.with_track
- batch_gt_instances = []
- ref_batch_gt_instances = []
- batch_gt_instances_ignore = []
- gt_instance_ids = []
- ref_gt_instance_ids = []
- for track_data_sample in data_samples:
- key_data_sample = track_data_sample.get_key_frames()[0]
- ref_data_sample = track_data_sample.get_ref_frames()[0]
- batch_gt_instances.append(key_data_sample.gt_instances)
- ref_batch_gt_instances.append(ref_data_sample.gt_instances)
- if 'ignored_instances' in key_data_sample:
- batch_gt_instances_ignore.append(
- key_data_sample.ignored_instances)
- else:
- batch_gt_instances_ignore.append(None)
- gt_instance_ids.append(key_data_sample.gt_instances.instances_ids)
- ref_gt_instance_ids.append(
- ref_data_sample.gt_instances.instances_ids)
- losses = dict()
- num_imgs = len(data_samples)
- if batch_gt_instances_ignore is None:
- batch_gt_instances_ignore = [None] * num_imgs
- sampling_results = []
- for i in range(num_imgs):
- rpn_results = rpn_results_list[i]
- assign_result = self.bbox_assigner.assign(
- rpn_results, batch_gt_instances[i],
- batch_gt_instances_ignore[i])
- sampling_result = self.bbox_sampler.sample(
- assign_result,
- rpn_results,
- batch_gt_instances[i],
- feats=[lvl_feat[i][None] for lvl_feat in key_feats])
- sampling_results.append(sampling_result)
- bboxes = [res.bboxes for res in sampling_results]
- bbox_feats, num_bbox_per_img = self.extract_roi_feats(
- key_feats, bboxes)
- # batch_size is 1
- ref_gt_bboxes = [
- ref_batch_gt_instance.bboxes
- for ref_batch_gt_instance in ref_batch_gt_instances
- ]
- ref_bbox_feats, num_bbox_per_ref_img = self.extract_roi_feats(
- ref_feats, ref_gt_bboxes)
- loss_track = self.embed_head.loss(bbox_feats, ref_bbox_feats,
- num_bbox_per_img,
- num_bbox_per_ref_img,
- sampling_results, gt_instance_ids,
- ref_gt_instance_ids)
- losses.update(loss_track)
- return losses
- def predict(self, roi_feats: Tensor,
- prev_roi_feats: Tensor) -> List[Tensor]:
- """Perform forward propagation of the tracking head and predict
- tracking results on the features of the upstream network.
- Args:
- roi_feats (Tensor): Feature map of current images rois.
- prev_roi_feats (Tensor): Feature map of previous images rois.
- Returns:
- list[Tensor]: The predicted similarity_logits of each pair of key
- image and reference image.
- """
- return self.embed_head.predict(roi_feats, prev_roi_feats)[0]
|