123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- _base_ = [
- 'mmdet::_base_/datasets/coco_detection.py',
- 'mmdet::_base_/schedules/schedule_1x.py',
- 'mmdet::_base_/default_runtime.py'
- ]
- custom_imports = dict(
- imports=['projects.DiffusionDet.diffusiondet'], allow_failed_imports=False)
- # model settings
- model = dict(
- type='DiffusionDet',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=32),
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- num_outs=4),
- bbox_head=dict(
- type='DynamicDiffusionDetHead',
- num_classes=80,
- feat_channels=256,
- num_proposals=500,
- num_heads=6,
- deep_supervision=True,
- prior_prob=0.01,
- snr_scale=2.0,
- sampling_timesteps=1,
- ddim_sampling_eta=1.0,
- single_head=dict(
- type='SingleDiffusionDetHead',
- num_cls_convs=1,
- num_reg_convs=3,
- dim_feedforward=2048,
- num_heads=8,
- dropout=0.0,
- act_cfg=dict(type='ReLU', inplace=True),
- dynamic_conv=dict(dynamic_dim=64, dynamic_num=2)),
- roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=2),
- out_channels=256,
- featmap_strides=[4, 8, 16, 32]),
- # criterion
- criterion=dict(
- type='DiffusionDetCriterion',
- num_classes=80,
- assigner=dict(
- type='DiffusionDetMatcher',
- match_costs=[
- dict(
- type='FocalLossCost',
- alpha=0.25,
- gamma=2.0,
- weight=2.0,
- eps=1e-8),
- dict(type='BBoxL1Cost', weight=5.0, box_format='xyxy'),
- dict(type='IoUCost', iou_mode='giou', weight=2.0)
- ],
- center_radius=2.5,
- candidate_topk=5),
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- alpha=0.25,
- gamma=2.0,
- reduction='sum',
- loss_weight=2.0),
- loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=5.0),
- loss_giou=dict(type='GIoULoss', reduction='sum',
- loss_weight=2.0))),
- test_cfg=dict(
- use_nms=True,
- score_thr=0.5,
- min_bbox_size=0,
- nms=dict(type='nms', iou_threshold=0.5),
- ))
- backend = 'pillow'
- train_pipeline = [
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args,
- imdecode_backend=backend),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='RandomChoice',
- transforms=[[
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
- (736, 1333), (768, 1333), (800, 1333)],
- keep_ratio=True,
- backend=backend),
- ],
- [
- dict(
- type='RandomChoiceResize',
- scales=[(400, 1333), (500, 1333), (600, 1333)],
- keep_ratio=True,
- backend=backend),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=(384, 600),
- allow_negative_crop=True),
- dict(
- type='RandomChoiceResize',
- scales=[(480, 1333), (512, 1333), (544, 1333),
- (576, 1333), (608, 1333), (640, 1333),
- (672, 1333), (704, 1333), (736, 1333),
- (768, 1333), (800, 1333)],
- keep_ratio=True,
- backend=backend)
- ]]),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args,
- imdecode_backend=backend),
- dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend),
- # If you don't have a gt annotation, delete the pipeline
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- sampler=dict(type='InfiniteSampler'),
- dataset=dict(
- filter_cfg=dict(filter_empty_gt=False, min_size=1e-5),
- pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(
- _delete_=True, type='AdamW', lr=0.000025, weight_decay=0.0001),
- clip_grad=dict(max_norm=1.0, norm_type=2))
- train_cfg = dict(
- _delete_=True,
- type='IterBasedTrainLoop',
- max_iters=450000,
- val_interval=75000)
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.01, by_epoch=False, begin=0, end=1000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=450000,
- by_epoch=False,
- milestones=[350000, 420000],
- gamma=0.1)
- ]
- default_hooks = dict(
- checkpoint=dict(by_epoch=False, interval=75000, max_keep_ckpts=3))
- log_processor = dict(by_epoch=False)
|