| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 | # Copyright (c) OpenMMLab. All rights reserved.import copyimport os.path as ospfrom typing import List, Unionfrom mmengine.fileio import get_local_pathfrom mmdet.datasets.base_det_dataset import BaseDetDatasetfrom mmdet.registry import DATASETSfrom .api_wrappers import COCO@DATASETS.register_module()class Coco90Dataset(BaseDetDataset):    """Dataset for COCO."""    METAINFO = {        'classes':        ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',         'truck', 'boat', 'traffic light', 'fire hydrant', None, 'stop sign',         'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',         'cow', 'elephant', 'bear', 'zebra', 'giraffe', None, 'backpack',         'umbrella', None, None, 'handbag', 'tie', 'suitcase', 'frisbee',         'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',         'baseball glove', 'skateboard', 'surfboard', 'tennis racket',         'bottle', None, 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',         'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',         'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',         'bed', None, 'dining table', None, None, 'toilet', None, 'tv',         'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',         'oven', 'toaster', 'sink', 'refrigerator', None, 'book', 'clock',         'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'),        # palette is a list of color tuples, which is used for visualization.        'palette':        [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),         (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),         (100, 170, 30), None, (220, 220, 0), (175, 116, 175), (250, 0, 30),         (165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255),         (0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255),         (199, 100, 0), (72, 0, 118), None,         (255, 179, 240), (0, 125, 92), None, None, (209, 0, 151),         (188, 208, 182), (0, 220, 176), (255, 99, 164), (92, 0, 73),         (133, 129, 255), (78, 180, 255), (0, 228, 0), (174, 255, 243),         (45, 89, 255), (134, 134, 103), (145, 148, 174), (255, 208, 186),         (197, 226, 255), None, (171, 134, 1), (109, 63, 54), (207, 138, 255),         (151, 0, 95), (9, 80, 61), (84, 105, 51), (74, 65, 105),         (166, 196, 102), (208, 195, 210), (255, 109, 65), (0, 143, 149),         (179, 0, 194), (209, 99, 106), (5, 121, 0), (227, 255, 205),         (147, 186, 208), (153, 69, 1), (3, 95, 161), (163, 255, 0),         (119, 0, 170), None, (0, 182, 199), None, None, (0, 165, 120), None,         (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),         (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),         (65, 70, 15), (127, 167, 115), (59, 105, 106), None, (142, 108, 45),         (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),         (246, 0, 122), (191, 162, 208)]    }    COCOAPI = COCO    # ann_id is unique in coco dataset.    ANN_ID_UNIQUE = True    def load_data_list(self) -> List[dict]:        """Load annotations from an annotation file named as ``self.ann_file``        Returns:            List[dict]: A list of annotation.        """  # noqa: E501        with get_local_path(                self.ann_file, backend_args=self.backend_args) as local_path:            self.coco = self.COCOAPI(local_path)        # The order of returned `cat_ids` will not        # change with the order of the `classes`        self.cat_ids = self.coco.get_cat_ids(            cat_names=self.metainfo['classes'])        self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}        self.cat_img_map = copy.deepcopy(self.coco.cat_img_map)        img_ids = self.coco.get_img_ids()        data_list = []        total_ann_ids = []        for img_id in img_ids:            raw_img_info = self.coco.load_imgs([img_id])[0]            raw_img_info['img_id'] = img_id            ann_ids = self.coco.get_ann_ids(img_ids=[img_id])            raw_ann_info = self.coco.load_anns(ann_ids)            total_ann_ids.extend(ann_ids)            parsed_data_info = self.parse_data_info({                'raw_ann_info':                raw_ann_info,                'raw_img_info':                raw_img_info            })            data_list.append(parsed_data_info)        if self.ANN_ID_UNIQUE:            assert len(set(total_ann_ids)) == len(                total_ann_ids            ), f"Annotation ids in '{self.ann_file}' are not unique!"        del self.coco        return data_list    def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]:        """Parse raw annotation to target format.        Args:            raw_data_info (dict): Raw data information load from ``ann_file``        Returns:            Union[dict, List[dict]]: Parsed annotation.        """        img_info = raw_data_info['raw_img_info']        ann_info = raw_data_info['raw_ann_info']        data_info = {}        # TODO: need to change data_prefix['img'] to data_prefix['img_path']        img_path = osp.join(self.data_prefix['img'], img_info['file_name'])        if self.data_prefix.get('seg', None):            seg_map_path = osp.join(                self.data_prefix['seg'],                img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix)        else:            seg_map_path = None        data_info['img_path'] = img_path        data_info['img_id'] = img_info['img_id']        data_info['seg_map_path'] = seg_map_path        data_info['height'] = img_info['height']        data_info['width'] = img_info['width']        instances = []        for i, ann in enumerate(ann_info):            instance = {}            if ann.get('ignore', False):                continue            x1, y1, w, h = ann['bbox']            inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))            inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))            if inter_w * inter_h == 0:                continue            if ann['area'] <= 0 or w < 1 or h < 1:                continue            if ann['category_id'] not in self.cat_ids:                continue            bbox = [x1, y1, x1 + w, y1 + h]            if ann.get('iscrowd', False):                instance['ignore_flag'] = 1            else:                instance['ignore_flag'] = 0            instance['bbox'] = bbox            instance['bbox_label'] = self.cat2label[ann['category_id']]            if ann.get('segmentation', None):                instance['mask'] = ann['segmentation']            instances.append(instance)        data_info['instances'] = instances        return data_info    def filter_data(self) -> List[dict]:        """Filter annotations according to filter_cfg.        Returns:            List[dict]: Filtered results.        """        if self.test_mode:            return self.data_list        if self.filter_cfg is None:            return self.data_list        filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)        min_size = self.filter_cfg.get('min_size', 0)        # obtain images that contain annotation        ids_with_ann = set(data_info['img_id'] for data_info in self.data_list)        # obtain images that contain annotations of the required categories        ids_in_cat = set()        for i, class_id in enumerate(self.cat_ids):            ids_in_cat |= set(self.cat_img_map[class_id])        # merge the image id sets of the two conditions and use the merged set        # to filter out images if self.filter_empty_gt=True        ids_in_cat &= ids_with_ann        valid_data_infos = []        for i, data_info in enumerate(self.data_list):            img_id = data_info['img_id']            width = data_info['width']            height = data_info['height']            if filter_empty_gt and img_id not in ids_in_cat:                continue            if min(width, height) >= min_size:                valid_data_infos.append(data_info)        return valid_data_infos
 |