VISION Datasets: A Benchmark for Vision-based InduStrial InspectiON
Despite progress in vision-based inspection algorithms, real-world industrial challenges – specifically in data availability, quality, and complex production requirements – often remain under-addressed. We introduce the VISION Datasets, a diverse collection of 14 industrial inspection datasets, uniquely poised to meet these challenges. Unlike previous datasets, VISION brings versatility to defect detection, offering annotation masks across all splits and catering to various detection methodologies. Our datasets also feature instance-segmentation annotation, enabling precise defect identification. With a total of 18k images encompassing 44 defect types, VISION strives to mirror a wide range of real-world production scenarios. By supporting two ongoing challenge competitions on the VISION Datasets, we hope to foster further advancements in vision-based industrial inspection. The datasets are available at https://huggingface.co/datasets/VISION-Workshop/VISION-Datasets.
首先你应该从 https://huggingface.co/datasets/VISION-Workshop/VISION-Datasets 下载数据集,并将其组织为如下格式:
mmdetection
├── mmdet
├── tools
├── configs
├── data
├── │── VISION-Datasets
├── │ ├── Cable.tar.gz
├── │ ├── Capacitor.tar.gz
├── │ ├── Casting.tar.gz
├── | ├── Console.tar.gz
├── │ ├── Cylinder.tar.gz
├── │ ├── Electronics.tar.gz
├── │ ├── Groove.tar.gz
├── │ ├── Hemisphere.tar.gz
├── │ ├── Lens.tar.gz
├── │ ├── PCB_1.tar.gz
├── │ ├── PCB_2.tar.gz
├── | ├── README.md
├── │ ├── Ring.tar.gz
├── │ ├── Screw.tar.gz
├── │ └── Wood.tar.gz
然后你可以使用将以下命令保存为 vision_unzip.sh
文件,并将其放置于 mmdetection
根目录下,然后 bash vision_unzip.sh
运行脚本进行解压处理
#!/usr/bin/env bash
for file in data/VISION-Datasets/*.tar.gz; do
tar -xzvzf "$file" -C data/VISION-Datasets/
done
最终的文件组织格式如下所示:
mmdetection
├── mmdet
├── tools
├── configs
├── data
| │── VISION-Datasets
| │ ├── Cable.tar.gz
| │ ├── Capacitor.tar.gz
| │ ├── Casting.tar.gz
| | ├── Console.tar.gz
| │ ├── Cylinder.tar.gz
| │ ├── Electronics.tar.gz
| │ ├── Groove.tar.gz
| │ ├── Hemisphere.tar.gz
| │ ├── Lens.tar.gz
| │ ├── PCB_1.tar.gz
| │ ├── PCB_2.tar.gz
| | ├── README.md
| │ ├── Ring.tar.gz
| │ ├── Screw.tar.gz
| │ └── Wood.tar.gz
| │ ├── Cable
| │ | |── train
| │ | | |── _annotations.coco.json # COCO format annotation
| │ | | |── 000001.png # Images
| │ | | |── 000002.png
| │ | | |── xxxxxx.png
| │ | |── val
| │ | | |── _annotations.coco.json # COCO format annotation
| │ | | |── xxxxxx.png # Images
| │ | |── inference
| │ | | |── _annotations.coco.json # COCO format annotation with unlabeled image list only
| │ | | |── xxxxxx.png # Images
...
TODO
@article{vision-datasets,
title = {VISION Datasets: A Benchmark for Vision-based InduStrial InspectiON},
author = {Haoping Bai, Shancong Mou, Tatiana Likhomanenko, Ramazan Gokberk Cinbis, Oncel Tuzel, Ping Huang, Jiulong Shan, Jianjun Shi, Meng Cao},
journal = {arXiv preprint arXiv:2306.07890},
year = {2023},
}