123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- _base_ = [
- '../../../configs/_base_/default_runtime.py',
- ]
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- image_size = (1024, 1024)
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
- dict(type='RandomFlip', prob=0.5),
- dict(
- type='RandomResize',
- scale=image_size,
- ratio_range=(0.1, 2.0),
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=image_size,
- recompute_bbox=True,
- allow_negative_crop=True),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
- dict(type='Pad', size=image_size, pad_val=dict(img=(114, 114, 114))),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=image_size, keep_ratio=True),
- dict(type='Pad', size=image_size, pad_val=dict(img=(114, 114, 114))),
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=4,
- num_workers=8,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=train_pipeline))
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_val2017.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=test_pipeline))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type='CocoMetric',
- ann_file=data_root + 'annotations/instances_val2017.json',
- metric=['bbox', 'segm'],
- format_only=False)
- test_evaluator = val_evaluator
- optim_wrapper = dict(
- type='AmpOptimWrapper',
- constructor='LayerDecayOptimizerConstructor',
- paramwise_cfg={
- 'decay_rate': 0.7,
- 'decay_type': 'layer_wise',
- 'num_layers': 12,
- },
- optimizer=dict(
- type='AdamW',
- lr=0.0001,
- betas=(0.9, 0.999),
- weight_decay=0.1,
- ))
- max_iters = 184375
- interval = 5000
- dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=250),
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_iters,
- by_epoch=False,
-
-
- milestones=[163889, 177546],
- gamma=0.1)
- ]
- train_cfg = dict(
- type='IterBasedTrainLoop',
- max_iters=max_iters,
- val_interval=interval,
- dynamic_intervals=dynamic_intervals)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- default_hooks = dict(
- logger=dict(type='LoggerHook', interval=50),
- checkpoint=dict(
- type='CheckpointHook',
- by_epoch=False,
- save_last=True,
- interval=interval,
- max_keep_ckpts=5))
- vis_backends = [
- dict(type='LocalVisBackend'),
- dict(type='TensorboardVisBackend')
- ]
- visualizer = dict(
- type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
- log_processor = dict(type='LogProcessor', window_size=50, by_epoch=False)
- auto_scale_lr = dict(base_batch_size=64)
|