123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.utils.checkpoint as checkpoint
- from mmcv.cnn.bricks import DropPath
- from mmdet.registry import MODELS
- # modified from https://github.com/microsoft/X-Decoder/blob/main/xdecoder/backbone/focal_dw.py # noqa
- @MODELS.register_module()
- class FocalNet(nn.Module):
- def __init__(
- self,
- patch_size=4,
- in_chans=3,
- embed_dim=96,
- depths=[2, 2, 6, 2],
- mlp_ratio=4.,
- drop_rate=0.,
- drop_path_rate=0.3,
- norm_layer=nn.LayerNorm,
- patch_norm=True,
- out_indices=[0, 1, 2, 3],
- frozen_stages=-1,
- focal_levels=[3, 3, 3, 3],
- focal_windows=[3, 3, 3, 3],
- use_pre_norms=[False, False, False, False],
- use_conv_embed=True,
- use_postln=True,
- use_postln_in_modulation=False,
- scaling_modulator=True,
- use_layerscale=True,
- use_checkpoint=False,
- ):
- super().__init__()
- self.num_layers = len(depths)
- self.embed_dim = embed_dim
- self.patch_norm = patch_norm
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- # split image into non-overlapping patches
- self.patch_embed = PatchEmbed(
- patch_size=patch_size,
- in_chans=in_chans,
- embed_dim=embed_dim,
- norm_layer=norm_layer if self.patch_norm else None,
- use_conv_embed=use_conv_embed,
- is_stem=True,
- use_pre_norm=False)
- self.pos_drop = nn.Dropout(p=drop_rate)
- dpr = [
- x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
- ]
- self.layers = nn.ModuleList()
- for i_layer in range(self.num_layers):
- layer = BasicLayer(
- dim=int(embed_dim * 2**i_layer),
- depth=depths[i_layer],
- mlp_ratio=mlp_ratio,
- drop=drop_rate,
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
- norm_layer=norm_layer,
- downsample=PatchEmbed if
- (i_layer < self.num_layers - 1) else None,
- focal_window=focal_windows[i_layer],
- focal_level=focal_levels[i_layer],
- use_pre_norm=use_pre_norms[i_layer],
- use_conv_embed=use_conv_embed,
- use_postln=use_postln,
- use_postln_in_modulation=use_postln_in_modulation,
- scaling_modulator=scaling_modulator,
- use_layerscale=use_layerscale,
- use_checkpoint=use_checkpoint)
- self.layers.append(layer)
- num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
- self.num_features = num_features
- # add a norm layer for each output
- for i_layer in self.out_indices:
- layer = norm_layer(num_features[i_layer])
- layer_name = f'norm{i_layer}'
- self.add_module(layer_name, layer)
- def forward(self, x):
- x = self.patch_embed(x)
- Wh, Ww = x.size(2), x.size(3)
- x = x.flatten(2).transpose(1, 2)
- x = self.pos_drop(x)
- outs = {}
- for i in range(self.num_layers):
- layer = self.layers[i]
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
- if i in self.out_indices:
- norm_layer = getattr(self, f'norm{i}')
- x_out = norm_layer(x_out)
- out = x_out.view(-1, H, W,
- self.num_features[i]).permute(0, 3, 1,
- 2).contiguous()
- outs['res{}'.format(i + 2)] = out
- return outs
- class Mlp(nn.Module):
- """Multilayer perceptron."""
- def __init__(self,
- in_features,
- hidden_features=None,
- out_features=None,
- act_layer=nn.GELU,
- drop=0.):
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features
- self.fc1 = nn.Linear(in_features, hidden_features)
- self.act = act_layer()
- self.fc2 = nn.Linear(hidden_features, out_features)
- self.drop = nn.Dropout(drop)
- def forward(self, x):
- x = self.fc1(x)
- x = self.act(x)
- x = self.drop(x)
- x = self.fc2(x)
- x = self.drop(x)
- return x
- class FocalModulation(nn.Module):
- """Focal Modulation.
- Args:
- dim (int): Number of input channels.
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
- focal_level (int): Number of focal levels
- focal_window (int): Focal window size at focal level 1
- focal_factor (int, default=2): Step to increase the focal window
- """
- def __init__(self,
- dim,
- proj_drop=0.,
- focal_level=2,
- focal_window=7,
- focal_factor=2,
- use_postln_in_modulation=False,
- scaling_modulator=False):
- super().__init__()
- self.dim = dim
- self.focal_level = focal_level
- self.focal_window = focal_window
- self.focal_factor = focal_factor
- self.use_postln_in_modulation = use_postln_in_modulation
- self.scaling_modulator = scaling_modulator
- self.f = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=True)
- self.h = nn.Conv2d(
- dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True)
- self.act = nn.GELU()
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop)
- self.focal_layers = nn.ModuleList()
- if self.use_postln_in_modulation:
- self.ln = nn.LayerNorm(dim)
- for k in range(self.focal_level):
- kernel_size = self.focal_factor * k + self.focal_window
- self.focal_layers.append(
- nn.Sequential(
- nn.Conv2d(
- dim,
- dim,
- kernel_size=kernel_size,
- stride=1,
- groups=dim,
- padding=kernel_size // 2,
- bias=False),
- nn.GELU(),
- ))
- def forward(self, x):
- """Forward function.
- Args:
- x: input features with shape of (B, H, W, C)
- """
- B, nH, nW, C = x.shape
- x = self.f(x)
- x = x.permute(0, 3, 1, 2).contiguous()
- q, ctx, gates = torch.split(x, (C, C, self.focal_level + 1), 1)
- ctx_all = 0
- for level in range(self.focal_level):
- ctx = self.focal_layers[level](ctx)
- ctx_all = ctx_all + ctx * gates[:, level:level + 1]
- ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
- ctx_all = ctx_all + ctx_global * gates[:, self.focal_level:]
- if self.scaling_modulator:
- ctx_all = ctx_all / (self.focal_level + 1)
- x_out = q * self.h(ctx_all)
- x_out = x_out.permute(0, 2, 3, 1).contiguous()
- if self.use_postln_in_modulation:
- x_out = self.ln(x_out)
- x_out = self.proj(x_out)
- x_out = self.proj_drop(x_out)
- return x_out
- class FocalModulationBlock(nn.Module):
- """Focal Modulation Block.
- Args:
- dim (int): Number of input channels.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
- norm_layer (nn.Module, optional): Normalization layer.
- Default: nn.LayerNorm
- focal_level (int): number of focal levels
- focal_window (int): focal kernel size at level 1
- """
- def __init__(self,
- dim,
- mlp_ratio=4.,
- drop=0.,
- drop_path=0.,
- act_layer=nn.GELU,
- norm_layer=nn.LayerNorm,
- focal_level=2,
- focal_window=9,
- use_postln=False,
- use_postln_in_modulation=False,
- scaling_modulator=False,
- use_layerscale=False,
- layerscale_value=1e-4):
- super().__init__()
- self.dim = dim
- self.mlp_ratio = mlp_ratio
- self.focal_window = focal_window
- self.focal_level = focal_level
- self.use_postln = use_postln
- self.use_layerscale = use_layerscale
- self.dw1 = nn.Conv2d(
- dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
- self.norm1 = norm_layer(dim)
- self.modulation = FocalModulation(
- dim,
- focal_window=self.focal_window,
- focal_level=self.focal_level,
- proj_drop=drop,
- use_postln_in_modulation=use_postln_in_modulation,
- scaling_modulator=scaling_modulator)
- self.dw2 = nn.Conv2d(
- dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)
- self.drop_path = DropPath(
- drop_path) if drop_path > 0. else nn.Identity()
- self.norm2 = norm_layer(dim)
- mlp_hidden_dim = int(dim * mlp_ratio)
- self.mlp = Mlp(
- in_features=dim,
- hidden_features=mlp_hidden_dim,
- act_layer=act_layer,
- drop=drop)
- self.H = None
- self.W = None
- self.gamma_1 = 1.0
- self.gamma_2 = 1.0
- if self.use_layerscale:
- self.gamma_1 = nn.Parameter(
- layerscale_value * torch.ones(dim), requires_grad=True)
- self.gamma_2 = nn.Parameter(
- layerscale_value * torch.ones(dim), requires_grad=True)
- def forward(self, x):
- """Forward function.
- Args:
- x: Input feature, tensor size (B, H*W, C).
- H, W: Spatial resolution of the input feature.
- """
- B, L, C = x.shape
- H, W = self.H, self.W
- assert L == H * W, 'input feature has wrong size'
- x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
- x = x + self.dw1(x)
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
- shortcut = x
- if not self.use_postln:
- x = self.norm1(x)
- x = x.view(B, H, W, C)
- # FM
- x = self.modulation(x).view(B, H * W, C)
- x = shortcut + self.drop_path(self.gamma_1 * x)
- if self.use_postln:
- x = self.norm1(x)
- x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
- x = x + self.dw2(x)
- x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)
- if not self.use_postln:
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
- else:
- x = x + self.drop_path(self.gamma_2 * self.mlp(x))
- x = self.norm2(x)
- return x
- class BasicLayer(nn.Module):
- """A basic focal modulation layer for one stage.
- Args:
- dim (int): Number of feature channels
- depth (int): Depths of this stage.
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
- Default: 4.
- drop (float, optional): Dropout rate. Default: 0.0
- drop_path (float | tuple[float], optional): Stochastic depth rate.
- Default: 0.0
- norm_layer (nn.Module, optional): Normalization layer.
- Default: nn.LayerNorm
- downsample (nn.Module | None, optional): Downsample layer at the
- end of the layer. Default: None
- focal_level (int): Number of focal levels
- focal_window (int): Focal window size at focal level 1
- use_conv_embed (bool): Use overlapped convolution for patch
- embedding or now. Default: False
- use_checkpoint (bool): Whether to use checkpointing to save memory.
- Default: False
- """
- def __init__(
- self,
- dim,
- depth,
- mlp_ratio=4.,
- drop=0.,
- drop_path=0.,
- norm_layer=nn.LayerNorm,
- downsample=None,
- focal_window=9,
- focal_level=2,
- use_conv_embed=False,
- use_postln=False,
- use_postln_in_modulation=False,
- scaling_modulator=False,
- use_layerscale=False,
- use_checkpoint=False,
- use_pre_norm=False,
- ):
- super().__init__()
- self.depth = depth
- self.use_checkpoint = use_checkpoint
- # build blocks
- self.blocks = nn.ModuleList([
- FocalModulationBlock(
- dim=dim,
- mlp_ratio=mlp_ratio,
- drop=drop,
- drop_path=drop_path[i]
- if isinstance(drop_path, list) else drop_path,
- focal_window=focal_window,
- focal_level=focal_level,
- use_postln=use_postln,
- use_postln_in_modulation=use_postln_in_modulation,
- scaling_modulator=scaling_modulator,
- use_layerscale=use_layerscale,
- norm_layer=norm_layer) for i in range(depth)
- ])
- # patch merging layer
- if downsample is not None:
- self.downsample = downsample(
- patch_size=2,
- in_chans=dim,
- embed_dim=2 * dim,
- use_conv_embed=use_conv_embed,
- norm_layer=norm_layer,
- is_stem=False,
- use_pre_norm=use_pre_norm)
- else:
- self.downsample = None
- def forward(self, x, H, W):
- """Forward function.
- Args:
- x: Input feature, tensor size (B, H*W, C).
- H, W: Spatial resolution of the input feature.
- """
- for blk in self.blocks:
- blk.H, blk.W = H, W
- if self.use_checkpoint:
- x = checkpoint.checkpoint(blk, x)
- else:
- x = blk(x)
- if self.downsample is not None:
- x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W)
- x_down = self.downsample(x_reshaped)
- x_down = x_down.flatten(2).transpose(1, 2)
- Wh, Ww = (H + 1) // 2, (W + 1) // 2
- return x, H, W, x_down, Wh, Ww
- else:
- return x, H, W, x, H, W
- class PatchEmbed(nn.Module):
- """Image to Patch Embedding.
- Args:
- patch_size (int): Patch token size. Default: 4.
- in_chans (int): Number of input image channels. Default: 3.
- embed_dim (int): Number of linear projection output channels.
- Default: 96.
- norm_layer (nn.Module, optional): Normalization layer.
- Default: None
- use_conv_embed (bool): Whether use overlapped convolution for
- patch embedding. Default: False
- is_stem (bool): Is the stem block or not.
- """
- def __init__(self,
- patch_size=4,
- in_chans=3,
- embed_dim=96,
- norm_layer=None,
- use_conv_embed=False,
- is_stem=False,
- use_pre_norm=False):
- super().__init__()
- patch_size = (patch_size, patch_size)
- self.patch_size = patch_size
- self.in_chans = in_chans
- self.embed_dim = embed_dim
- self.use_pre_norm = use_pre_norm
- if use_conv_embed:
- # if we choose to use conv embedding,
- # then we treat the stem and non-stem differently
- if is_stem:
- kernel_size = 7
- padding = 3
- stride = 4
- else:
- kernel_size = 3
- padding = 1
- stride = 2
- self.proj = nn.Conv2d(
- in_chans,
- embed_dim,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding)
- else:
- self.proj = nn.Conv2d(
- in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
- if self.use_pre_norm:
- if norm_layer is not None:
- self.norm = norm_layer(in_chans)
- else:
- self.norm = None
- else:
- if norm_layer is not None:
- self.norm = norm_layer(embed_dim)
- else:
- self.norm = None
- def forward(self, x):
- """Forward function."""
- B, C, H, W = x.size()
- if W % self.patch_size[1] != 0:
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
- if H % self.patch_size[0] != 0:
- x = F.pad(x,
- (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
- if self.use_pre_norm:
- if self.norm is not None:
- x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
- x = self.norm(x).transpose(1, 2).view(B, C, H, W)
- x = self.proj(x)
- else:
- x = self.proj(x) # B C Wh Ww
- if self.norm is not None:
- Wh, Ww = x.size(2), x.size(3)
- x = x.flatten(2).transpose(1, 2)
- x = self.norm(x)
- x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
- return x
|