1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import AnchorHead
- class TestAnchorHead(TestCase):
- def test_anchor_head_loss(self):
- """Tests anchor head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=0,
- pos_weight=-1,
- debug=False))
- anchor_head = AnchorHead(num_classes=4, in_channels=1, train_cfg=cfg)
- # Anchor head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))
- for i in range(len(anchor_head.prior_generator.strides)))
- cls_scores, bbox_preds = anchor_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box loss.
- empty_cls_loss = sum(empty_gt_losses['loss_cls'])
- empty_box_loss = sum(empty_gt_losses['loss_bbox'])
- assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
- assert empty_box_loss.item() == 0, (
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = anchor_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_cls'])
- onegt_box_loss = sum(one_gt_losses['loss_bbox'])
- assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
- assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
|