123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from math import ceil
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import PISARetinaHead
- class TestPISARetinaHead(TestCase):
- def test_pisa_reitnanet_head_loss(self):
- """Tests pisa retinanet head loss when truth is empty and non-empty."""
- s = 300
- img_metas = [{
- 'img_shape': (s, s),
- 'pad_shape': (s, s),
- 'scale_factor': 1,
- }]
- cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.4,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- isr=dict(k=2., bias=0.),
- carl=dict(k=1., bias=0.2),
- sampler=dict(type='PseudoSampler'),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- pisa_retinanet_head = PISARetinaHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- feat_channels=256,
- anchor_generator=dict(
- type='AnchorGenerator',
- octave_base_scale=4,
- scales_per_octave=3,
- ratios=[0.5, 1.0, 2.0],
- strides=[8, 16, 32, 64, 128]),
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[.0, .0, .0, .0],
- target_stds=[1.0, 1.0, 1.0, 1.0]),
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0),
- train_cfg=cfg)
- # pisa retina head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0]))
- for stride in pisa_retinanet_head.prior_generator.strides)
- cls_scores, bbox_preds = pisa_retinanet_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = pisa_retinanet_head.loss_by_feat(
- cls_scores, bbox_preds, [gt_instances], img_metas)
- # When there is no truth, cls_loss and box_loss should all be zero.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- empty_carl_loss = empty_gt_losses['loss_carl']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- self.assertEqual(
- empty_carl_loss.item(), 0,
- 'there should be no carl loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = pisa_retinanet_head.loss_by_feat(
- cls_scores, bbox_preds, [gt_instances], img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- onegt_carl_loss = one_gt_losses['loss_carl']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
- self.assertGreater(onegt_carl_loss.item(), 0,
- 'carl loss should be non-zero')
|