test_sabl_retina_head.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from unittest import TestCase
  3. import torch
  4. from mmengine.config import ConfigDict
  5. from mmengine.structures import InstanceData
  6. from mmdet.models.dense_heads import SABLRetinaHead
  7. class TestSABLRetinaHead(TestCase):
  8. def test_sabl_retina_head(self):
  9. """Tests sabl retina head loss when truth is empty and non-empty."""
  10. s = 256
  11. img_metas = [{
  12. 'img_shape': (s, s),
  13. 'pad_shape': (s, s),
  14. 'scale_factor': [1, 1],
  15. }]
  16. train_cfg = ConfigDict(
  17. dict(
  18. assigner=dict(
  19. type='ApproxMaxIoUAssigner',
  20. pos_iou_thr=0.5,
  21. neg_iou_thr=0.4,
  22. min_pos_iou=0.0,
  23. ignore_iof_thr=-1),
  24. allowed_border=-1,
  25. pos_weight=-1,
  26. debug=False))
  27. sabl_retina_head = SABLRetinaHead(
  28. num_classes=4,
  29. in_channels=1,
  30. feat_channels=1,
  31. stacked_convs=1,
  32. approx_anchor_generator=dict(
  33. type='AnchorGenerator',
  34. octave_base_scale=4,
  35. scales_per_octave=3,
  36. ratios=[0.5, 1.0, 2.0],
  37. strides=[8, 16, 32, 64, 128]),
  38. square_anchor_generator=dict(
  39. type='AnchorGenerator',
  40. ratios=[1.0],
  41. scales=[4],
  42. strides=[8, 16, 32, 64, 128]),
  43. bbox_coder=dict(
  44. type='BucketingBBoxCoder', num_buckets=14, scale_factor=3.0),
  45. loss_cls=dict(
  46. type='FocalLoss',
  47. use_sigmoid=True,
  48. gamma=2.0,
  49. alpha=0.25,
  50. loss_weight=1.0),
  51. loss_bbox_cls=dict(
  52. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.5),
  53. loss_bbox_reg=dict(
  54. type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.5),
  55. train_cfg=train_cfg)
  56. # Fcos head expects a multiple levels of features per image
  57. feats = (
  58. torch.rand(1, 1, s // stride[1], s // stride[0])
  59. for stride in sabl_retina_head.square_anchor_generator.strides)
  60. outs = sabl_retina_head.forward(feats)
  61. # Test that empty ground truth encourages the network to
  62. # predict background
  63. gt_instances = InstanceData()
  64. gt_instances.bboxes = torch.empty((0, 4))
  65. gt_instances.labels = torch.LongTensor([])
  66. empty_gt_losses = sabl_retina_head.loss_by_feat(
  67. *outs, [gt_instances], img_metas)
  68. # When there is no truth, the cls loss should be nonzero but
  69. # box loss and centerness loss should be zero
  70. empty_cls_loss = sum(empty_gt_losses['loss_cls']).item()
  71. empty_box_cls_loss = sum(empty_gt_losses['loss_bbox_cls']).item()
  72. empty_box_reg_loss = sum(empty_gt_losses['loss_bbox_reg']).item()
  73. self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero')
  74. self.assertEqual(
  75. empty_box_cls_loss, 0,
  76. 'there should be no box loss when there are no true boxes')
  77. self.assertEqual(
  78. empty_box_reg_loss, 0,
  79. 'there should be no centerness loss when there are no true boxes')
  80. # When truth is non-empty then all cls, box loss and centerness loss
  81. # should be nonzero for random inputs
  82. gt_instances = InstanceData()
  83. gt_instances.bboxes = torch.Tensor(
  84. [[23.6667, 23.8757, 238.6326, 151.8874]])
  85. gt_instances.labels = torch.LongTensor([2])
  86. one_gt_losses = sabl_retina_head.loss_by_feat(*outs, [gt_instances],
  87. img_metas)
  88. onegt_cls_loss = sum(one_gt_losses['loss_cls']).item()
  89. onegt_box_cls_loss = sum(one_gt_losses['loss_bbox_cls']).item()
  90. onegt_box_reg_loss = sum(one_gt_losses['loss_bbox_reg']).item()
  91. self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero')
  92. self.assertGreater(onegt_box_cls_loss, 0,
  93. 'box loss should be non-zero')
  94. self.assertGreater(onegt_box_reg_loss, 0,
  95. 'centerness loss should be non-zero')
  96. test_cfg = ConfigDict(
  97. dict(
  98. nms_pre=1000,
  99. min_bbox_size=0,
  100. score_thr=0.05,
  101. nms=dict(type='nms', iou_threshold=0.5),
  102. max_per_img=100))
  103. # test predict_by_feat
  104. sabl_retina_head.predict_by_feat(
  105. *outs, batch_img_metas=img_metas, cfg=test_cfg, rescale=True)