coco_stuff164k.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. import argparse
  3. import os.path as osp
  4. from functools import partial
  5. from glob import glob
  6. import numpy as np
  7. from mmengine.utils import (mkdir_or_exist, track_parallel_progress,
  8. track_progress)
  9. from PIL import Image
  10. COCO_LEN = 123287
  11. clsID_to_trID = {
  12. 0: 0,
  13. 1: 1,
  14. 2: 2,
  15. 3: 3,
  16. 4: 4,
  17. 5: 5,
  18. 6: 6,
  19. 7: 7,
  20. 8: 8,
  21. 9: 9,
  22. 10: 10,
  23. 12: 11,
  24. 13: 12,
  25. 14: 13,
  26. 15: 14,
  27. 16: 15,
  28. 17: 16,
  29. 18: 17,
  30. 19: 18,
  31. 20: 19,
  32. 21: 20,
  33. 22: 21,
  34. 23: 22,
  35. 24: 23,
  36. 26: 24,
  37. 27: 25,
  38. 30: 26,
  39. 31: 27,
  40. 32: 28,
  41. 33: 29,
  42. 34: 30,
  43. 35: 31,
  44. 36: 32,
  45. 37: 33,
  46. 38: 34,
  47. 39: 35,
  48. 40: 36,
  49. 41: 37,
  50. 42: 38,
  51. 43: 39,
  52. 45: 40,
  53. 46: 41,
  54. 47: 42,
  55. 48: 43,
  56. 49: 44,
  57. 50: 45,
  58. 51: 46,
  59. 52: 47,
  60. 53: 48,
  61. 54: 49,
  62. 55: 50,
  63. 56: 51,
  64. 57: 52,
  65. 58: 53,
  66. 59: 54,
  67. 60: 55,
  68. 61: 56,
  69. 62: 57,
  70. 63: 58,
  71. 64: 59,
  72. 66: 60,
  73. 69: 61,
  74. 71: 62,
  75. 72: 63,
  76. 73: 64,
  77. 74: 65,
  78. 75: 66,
  79. 76: 67,
  80. 77: 68,
  81. 78: 69,
  82. 79: 70,
  83. 80: 71,
  84. 81: 72,
  85. 83: 73,
  86. 84: 74,
  87. 85: 75,
  88. 86: 76,
  89. 87: 77,
  90. 88: 78,
  91. 89: 79,
  92. 91: 80,
  93. 92: 81,
  94. 93: 82,
  95. 94: 83,
  96. 95: 84,
  97. 96: 85,
  98. 97: 86,
  99. 98: 87,
  100. 99: 88,
  101. 100: 89,
  102. 101: 90,
  103. 102: 91,
  104. 103: 92,
  105. 104: 93,
  106. 105: 94,
  107. 106: 95,
  108. 107: 96,
  109. 108: 97,
  110. 109: 98,
  111. 110: 99,
  112. 111: 100,
  113. 112: 101,
  114. 113: 102,
  115. 114: 103,
  116. 115: 104,
  117. 116: 105,
  118. 117: 106,
  119. 118: 107,
  120. 119: 108,
  121. 120: 109,
  122. 121: 110,
  123. 122: 111,
  124. 123: 112,
  125. 124: 113,
  126. 125: 114,
  127. 126: 115,
  128. 127: 116,
  129. 128: 117,
  130. 129: 118,
  131. 130: 119,
  132. 131: 120,
  133. 132: 121,
  134. 133: 122,
  135. 134: 123,
  136. 135: 124,
  137. 136: 125,
  138. 137: 126,
  139. 138: 127,
  140. 139: 128,
  141. 140: 129,
  142. 141: 130,
  143. 142: 131,
  144. 143: 132,
  145. 144: 133,
  146. 145: 134,
  147. 146: 135,
  148. 147: 136,
  149. 148: 137,
  150. 149: 138,
  151. 150: 139,
  152. 151: 140,
  153. 152: 141,
  154. 153: 142,
  155. 154: 143,
  156. 155: 144,
  157. 156: 145,
  158. 157: 146,
  159. 158: 147,
  160. 159: 148,
  161. 160: 149,
  162. 161: 150,
  163. 162: 151,
  164. 163: 152,
  165. 164: 153,
  166. 165: 154,
  167. 166: 155,
  168. 167: 156,
  169. 168: 157,
  170. 169: 158,
  171. 170: 159,
  172. 171: 160,
  173. 172: 161,
  174. 173: 162,
  175. 174: 163,
  176. 175: 164,
  177. 176: 165,
  178. 177: 166,
  179. 178: 167,
  180. 179: 168,
  181. 180: 169,
  182. 181: 170,
  183. 255: 255
  184. }
  185. def convert_to_trainID(maskpath, out_mask_dir, is_train):
  186. mask = np.array(Image.open(maskpath))
  187. mask_copy = mask.copy()
  188. for clsID, trID in clsID_to_trID.items():
  189. mask_copy[mask == clsID] = trID
  190. seg_filename = osp.join(out_mask_dir, 'train2017',
  191. osp.basename(maskpath)) if is_train else osp.join(
  192. out_mask_dir, 'val2017',
  193. osp.basename(maskpath))
  194. Image.fromarray(mask_copy).save(seg_filename, 'PNG')
  195. def parse_args():
  196. parser = argparse.ArgumentParser(
  197. description=\
  198. 'Convert COCO Stuff 164k annotations to mmdet format') # noqa
  199. parser.add_argument('coco_path', help='coco stuff path')
  200. parser.add_argument(
  201. '--out-dir-name',
  202. '-o',
  203. default='stuffthingmaps_semseg',
  204. help='output path')
  205. parser.add_argument(
  206. '--nproc', default=16, type=int, help='number of process')
  207. args = parser.parse_args()
  208. return args
  209. def main():
  210. args = parse_args()
  211. coco_path = args.coco_path
  212. out_dir = osp.join(coco_path, args.out_dir_name)
  213. nproc = args.nproc
  214. mkdir_or_exist(osp.join(out_dir, 'train2017'))
  215. mkdir_or_exist(osp.join(out_dir, 'val2017'))
  216. train_list = glob(osp.join(coco_path, 'stuffthingmaps/train2017', '*.png'))
  217. val_list = glob(osp.join(coco_path, 'stuffthingmaps/val2017', '*.png'))
  218. assert (len(train_list) +
  219. len(val_list)) == COCO_LEN, 'Wrong length of list {} & {}'.format(
  220. len(train_list), len(val_list))
  221. if args.nproc > 1:
  222. track_parallel_progress(
  223. partial(convert_to_trainID, out_mask_dir=out_dir, is_train=True),
  224. train_list,
  225. nproc=nproc)
  226. track_parallel_progress(
  227. partial(convert_to_trainID, out_mask_dir=out_dir, is_train=False),
  228. val_list,
  229. nproc=nproc)
  230. else:
  231. track_progress(
  232. partial(convert_to_trainID, out_mask_dir=out_dir, is_train=True),
  233. train_list)
  234. track_progress(
  235. partial(convert_to_trainID, out_mask_dir=out_dir, is_train=False),
  236. val_list)
  237. print('Done!')
  238. if __name__ == '__main__':
  239. main()