mot2reid.py 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. # This script converts MOT dataset into ReID dataset.
  3. # Official website of the MOT dataset: https://motchallenge.net/
  4. #
  5. # Label format of MOT dataset:
  6. # GTs:
  7. # <frame_id> # starts from 1,
  8. # <instance_id>, <x1>, <y1>, <w>, <h>,
  9. # <conf> # conf is annotated as 0 if the object is ignored,
  10. # <class_id>, <visibility>
  11. #
  12. # DETs and Results:
  13. # <frame_id>, <instance_id>, <x1>, <y1>, <w>, <h>, <conf>,
  14. # <x>, <y>, <z> # for 3D objects
  15. #
  16. # Classes in MOT:
  17. # 1: 'pedestrian'
  18. # 2: 'person on vehicle'
  19. # 3: 'car'
  20. # 4: 'bicycle'
  21. # 5: 'motorbike'
  22. # 6: 'non motorized vehicle'
  23. # 7: 'static person'
  24. # 8: 'distractor'
  25. # 9: 'occluder'
  26. # 10: 'occluder on the ground',
  27. # 11: 'occluder full'
  28. # 12: 'reflection'
  29. #
  30. # USELESS classes and IGNORES classes will not be selected
  31. # into the dataset for reid model training.
  32. import argparse
  33. import os
  34. import os.path as osp
  35. import random
  36. import mmcv
  37. import numpy as np
  38. from mmengine.fileio import list_from_file
  39. from tqdm import tqdm
  40. USELESS = [3, 4, 5, 6, 9, 10, 11]
  41. IGNORES = [2, 7, 8, 12, 13]
  42. def parse_args():
  43. parser = argparse.ArgumentParser(
  44. description='Convert MOT dataset into ReID dataset.')
  45. parser.add_argument('-i', '--input', help='path of MOT data')
  46. parser.add_argument('-o', '--output', help='path to save ReID dataset')
  47. parser.add_argument(
  48. '--val-split',
  49. type=float,
  50. default=0.2,
  51. help='proportion of the validation dataset to the whole ReID dataset')
  52. parser.add_argument(
  53. '--vis-threshold',
  54. type=float,
  55. default=0.3,
  56. help='threshold of visibility for each person')
  57. parser.add_argument(
  58. '--min-per-person',
  59. type=int,
  60. default=8,
  61. help='minimum number of images for each person')
  62. parser.add_argument(
  63. '--max-per-person',
  64. type=int,
  65. default=1000,
  66. help='maxmum number of images for each person')
  67. return parser.parse_args()
  68. def main():
  69. args = parse_args()
  70. if not osp.isdir(args.output):
  71. os.makedirs(args.output, exist_ok=True)
  72. in_folder = osp.join(args.input, 'train')
  73. video_names = os.listdir(in_folder)
  74. if 'MOT17' in in_folder:
  75. video_names = [
  76. video_name for video_name in video_names if 'FRCNN' in video_name
  77. ]
  78. is_mot15 = True if 'MOT15' in in_folder else False
  79. for video_name in tqdm(video_names):
  80. # load video infos
  81. video_folder = osp.join(in_folder, video_name)
  82. infos = list_from_file(f'{video_folder}/seqinfo.ini')
  83. # video-level infos
  84. assert video_name == infos[1].strip().split('=')[1]
  85. raw_img_folder = infos[2].strip().split('=')[1]
  86. raw_img_names = os.listdir(f'{video_folder}/{raw_img_folder}')
  87. raw_img_names = sorted(raw_img_names)
  88. num_raw_imgs = int(infos[4].strip().split('=')[1])
  89. assert num_raw_imgs == len(raw_img_names)
  90. reid_train_folder = osp.join(args.output, 'imgs')
  91. if not osp.exists(reid_train_folder):
  92. os.makedirs(reid_train_folder)
  93. gts = list_from_file(f'{video_folder}/gt/gt.txt')
  94. last_frame_id = -1
  95. for gt in gts:
  96. gt = gt.strip().split(',')
  97. frame_id, ins_id = map(int, gt[:2])
  98. ltwh = list(map(float, gt[2:6]))
  99. if is_mot15:
  100. class_id = 1
  101. visibility = 1.
  102. else:
  103. class_id = int(gt[7])
  104. visibility = float(gt[8])
  105. if class_id in USELESS:
  106. continue
  107. elif class_id in IGNORES:
  108. continue
  109. elif visibility < args.vis_threshold:
  110. continue
  111. reid_img_folder = osp.join(reid_train_folder,
  112. f'{video_name}_{ins_id:06d}')
  113. if not osp.exists(reid_img_folder):
  114. os.makedirs(reid_img_folder)
  115. idx = len(os.listdir(reid_img_folder))
  116. reid_img_name = f'{idx:06d}.jpg'
  117. if frame_id != last_frame_id:
  118. raw_img_name = raw_img_names[frame_id - 1]
  119. raw_img = mmcv.imread(
  120. f'{video_folder}/{raw_img_folder}/{raw_img_name}')
  121. last_frame_id = frame_id
  122. xyxy = np.asarray(
  123. [ltwh[0], ltwh[1], ltwh[0] + ltwh[2], ltwh[1] + ltwh[3]])
  124. reid_img = mmcv.imcrop(raw_img, xyxy)
  125. mmcv.imwrite(reid_img, f'{reid_img_folder}/{reid_img_name}')
  126. reid_meta_folder = osp.join(args.output, 'meta')
  127. if not osp.exists(reid_meta_folder):
  128. os.makedirs(reid_meta_folder)
  129. reid_train_list = []
  130. reid_val_list = []
  131. reid_img_folder_names = sorted(os.listdir(reid_train_folder))
  132. num_ids = len(reid_img_folder_names)
  133. num_train_ids = int(num_ids * (1 - args.val_split))
  134. train_label, val_label = 0, 0
  135. random.seed(0)
  136. for reid_img_folder_name in reid_img_folder_names[:num_train_ids]:
  137. reid_img_names = os.listdir(
  138. f'{reid_train_folder}/{reid_img_folder_name}')
  139. # ignore ids whose number of image is less than min_per_person
  140. if (len(reid_img_names) < args.min_per_person):
  141. continue
  142. # downsampling when there are too many images owned by one id
  143. if (len(reid_img_names) > args.max_per_person):
  144. reid_img_names = random.sample(reid_img_names, args.max_per_person)
  145. # training set
  146. for reid_img_name in reid_img_names:
  147. reid_train_list.append(
  148. f'{reid_img_folder_name}/{reid_img_name} {train_label}\n')
  149. train_label += 1
  150. reid_entire_dataset_list = reid_train_list.copy()
  151. for reid_img_folder_name in reid_img_folder_names[num_train_ids:]:
  152. reid_img_names = os.listdir(
  153. f'{reid_train_folder}/{reid_img_folder_name}')
  154. # ignore ids whose number of image is less than min_per_person
  155. if (len(reid_img_names) < args.min_per_person):
  156. continue
  157. # downsampling when there are too many images owned by one id
  158. if (len(reid_img_names) > args.max_per_person):
  159. reid_img_names = random.sample(reid_img_names, args.max_per_person)
  160. for reid_img_name in reid_img_names:
  161. # validation set
  162. reid_val_list.append(
  163. f'{reid_img_folder_name}/{reid_img_name} {val_label}\n')
  164. reid_entire_dataset_list.append(
  165. f'{reid_img_folder_name}/{reid_img_name} '
  166. f'{train_label + val_label}\n')
  167. val_label += 1
  168. with open(
  169. osp.join(reid_meta_folder,
  170. f'train_{int(100 * (1 - args.val_split))}.txt'),
  171. 'w') as f:
  172. f.writelines(reid_train_list)
  173. with open(
  174. osp.join(reid_meta_folder, f'val_{int(100 * args.val_split)}.txt'),
  175. 'w') as f:
  176. f.writelines(reid_val_list)
  177. with open(osp.join(reid_meta_folder, 'train.txt'), 'w') as f:
  178. f.writelines(reid_entire_dataset_list)
  179. if __name__ == '__main__':
  180. main()