coco_instance.py 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. _base_ = [
  2. '../_base_/models/mask-rcnn_r50_fpn.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py',
  4. '../_base_/datasets/dsdl.py'
  5. ]
  6. # dsdl dataset settings.
  7. # please visit our platform [OpenDataLab](https://opendatalab.com/)
  8. # to downloaded dsdl dataset.
  9. data_root = 'data/COCO2017'
  10. img_prefix = 'original'
  11. train_ann = 'dsdl/set-train/train.yaml'
  12. val_ann = 'dsdl/set-val/val.yaml'
  13. specific_key_path = dict(ignore_flag='./annotations/*/iscrowd')
  14. backend_args = None
  15. train_pipeline = [
  16. dict(type='LoadImageFromFile', backend_args=backend_args),
  17. dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
  18. dict(type='Resize', scale=(1333, 800), keep_ratio=True),
  19. dict(type='RandomFlip', prob=0.5),
  20. dict(type='PackDetInputs')
  21. ]
  22. test_pipeline = [
  23. dict(type='LoadImageFromFile', backend_args=backend_args),
  24. dict(type='Resize', scale=(1333, 800), keep_ratio=True),
  25. dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
  26. dict(
  27. type='PackDetInputs',
  28. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
  29. 'scale_factor', 'instances'))
  30. ]
  31. train_dataloader = dict(
  32. dataset=dict(
  33. with_polygon=True,
  34. specific_key_path=specific_key_path,
  35. data_root=data_root,
  36. ann_file=train_ann,
  37. data_prefix=dict(img_path=img_prefix),
  38. filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32),
  39. pipeline=train_pipeline,
  40. ))
  41. val_dataloader = dict(
  42. dataset=dict(
  43. with_polygon=True,
  44. specific_key_path=specific_key_path,
  45. data_root=data_root,
  46. ann_file=val_ann,
  47. data_prefix=dict(img_path=img_prefix),
  48. pipeline=test_pipeline,
  49. ))
  50. test_dataloader = val_dataloader
  51. val_evaluator = dict(
  52. type='CocoMetric', metric=['bbox', 'segm'], format_only=False)
  53. test_evaluator = val_evaluator