12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- _base_ = [
- '../_base_/models/faster-rcnn_r50_fpn.py',
- '../_base_/schedules/schedule_1x.py',
- '../_base_/default_runtime.py',
- ]
- model = dict(roi_head=dict(bbox_head=dict(num_classes=601)))
- # dsdl dataset settings
- # please visit our platform [OpenDataLab](https://opendatalab.com/)
- # to downloaded dsdl dataset.
- dataset_type = 'DSDLDetDataset'
- data_root = 'data/OpenImages'
- train_ann = 'dsdl/set-train/train.yaml'
- val_ann = 'dsdl/set-val/val.yaml'
- specific_key_path = dict(
- image_level_labels='./image_labels/*/label',
- Label='./objects/*/label',
- is_group_of='./objects/*/isgroupof',
- )
- backend_args = dict(
- backend='petrel',
- path_mapping=dict({'data/': 's3://open_dataset_original/'}))
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', scale=(1024, 800), keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(1024, 800), keep_ratio=True),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'instances', 'image_level_labels'))
- ]
- train_dataloader = dict(
- sampler=dict(type='ClassAwareSampler', num_sample_class=1),
- dataset=dict(
- type=dataset_type,
- with_imagelevel_label=True,
- with_hierarchy=True,
- specific_key_path=specific_key_path,
- data_root=data_root,
- ann_file=train_ann,
- filter_cfg=dict(filter_empty_gt=True, min_size=32, bbox_min_size=32),
- pipeline=train_pipeline))
- val_dataloader = dict(
- dataset=dict(
- type=dataset_type,
- with_imagelevel_label=True,
- with_hierarchy=True,
- specific_key_path=specific_key_path,
- data_root=data_root,
- ann_file=val_ann,
- test_mode=True,
- pipeline=test_pipeline))
- test_dataloader = val_dataloader
- default_hooks = dict(logger=dict(type='LoggerHook', interval=1000), )
- train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=3, val_interval=1)
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
- dict(
- type='MultiStepLR',
- begin=0,
- end=12,
- by_epoch=True,
- milestones=[1, 2],
- gamma=0.1)
- ]
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001))
- val_evaluator = dict(
- type='OpenImagesMetric',
- iou_thrs=0.5,
- ioa_thrs=0.5,
- use_group_of=True,
- get_supercategory=True)
- test_evaluator = val_evaluator
|