reid_r50_8xb32-6e_mot17train80_test-mot17val20.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. _base_ = [
  2. '../_base_/datasets/mot_challenge_reid.py', '../_base_/default_runtime.py'
  3. ]
  4. model = dict(
  5. type='BaseReID',
  6. data_preprocessor=dict(
  7. type='ReIDDataPreprocessor',
  8. mean=[123.675, 116.28, 103.53],
  9. std=[58.395, 57.12, 57.375],
  10. to_rgb=True),
  11. backbone=dict(
  12. type='mmpretrain.ResNet',
  13. depth=50,
  14. num_stages=4,
  15. out_indices=(3, ),
  16. style='pytorch'),
  17. neck=dict(type='GlobalAveragePooling', kernel_size=(8, 4), stride=1),
  18. head=dict(
  19. type='LinearReIDHead',
  20. num_fcs=1,
  21. in_channels=2048,
  22. fc_channels=1024,
  23. out_channels=128,
  24. num_classes=380,
  25. loss_cls=dict(type='mmpretrain.CrossEntropyLoss', loss_weight=1.0),
  26. loss_triplet=dict(type='TripletLoss', margin=0.3, loss_weight=1.0),
  27. norm_cfg=dict(type='BN1d'),
  28. act_cfg=dict(type='ReLU')),
  29. init_cfg=dict(
  30. type='Pretrained',
  31. checkpoint= # noqa: E251
  32. 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth' # noqa: E501
  33. ))
  34. # optimizer
  35. optim_wrapper = dict(
  36. type='OptimWrapper',
  37. clip_grad=None,
  38. optimizer=dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001))
  39. # learning policy
  40. param_scheduler = [
  41. dict(
  42. type='LinearLR',
  43. start_factor=1.0 / 1000,
  44. by_epoch=False,
  45. begin=0,
  46. end=1000),
  47. dict(
  48. type='MultiStepLR',
  49. begin=0,
  50. end=6,
  51. by_epoch=True,
  52. milestones=[5],
  53. gamma=0.1)
  54. ]
  55. # train, val, test setting
  56. train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6, val_interval=1)
  57. val_cfg = dict(type='ValLoop')
  58. test_cfg = dict(type='TestLoop')