xdecoder-tiny_zeroshot_open-vocab-panoptic_ade20k.py 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. _base_ = [
  2. '_base_/xdecoder-tiny_open-vocab-panoptic.py',
  3. 'mmdet::_base_/datasets/ade20k_panoptic.py'
  4. ]
  5. model = dict(test_cfg=dict(mask_thr=0.4))
  6. test_pipeline = [
  7. dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
  8. dict(type='Resize', scale=(2560, 640), keep_ratio=True),
  9. dict(type='LoadPanopticAnnotations', backend_args=_base_.backend_args),
  10. dict(
  11. type='PackDetInputs',
  12. meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
  13. 'scale_factor', 'text', 'stuff_text'))
  14. ]
  15. x_decoder_ade20k_thing_classes = (
  16. 'bed', 'window', 'cabinet', 'person', 'door', 'table', 'curtain', 'chair',
  17. 'car', 'painting', 'sofa', 'shelf', 'mirror', 'armchair', 'seat', 'fence',
  18. 'desk', 'wardrobe', 'lamp', 'tub', 'rail', 'cushion', 'box', 'column',
  19. 'signboard', 'chest of drawers', 'counter', 'sink', 'fireplace',
  20. 'refrigerator', 'stairs', 'case', 'pool table', 'pillow', 'screen door',
  21. 'bookcase', 'coffee table', 'toilet', 'flower', 'book', 'bench',
  22. 'countertop', 'stove', 'palm', 'kitchen island', 'computer',
  23. 'swivel chair', 'boat', 'arcade machine', 'bus', 'towel', 'light', 'truck',
  24. 'chandelier', 'awning', 'street lamp', 'booth', 'tv', 'airplane',
  25. 'clothes', 'pole', 'bannister', 'ottoman', 'bottle', 'van', 'ship',
  26. 'fountain', 'washer', 'plaything', 'stool', 'barrel', 'basket', 'bag',
  27. 'minibike', 'oven', 'ball', 'food', 'step', 'trade name', 'microwave',
  28. 'pot', 'animal', 'bicycle', 'dishwasher', 'screen', 'sculpture', 'hood',
  29. 'sconce', 'vase', 'traffic light', 'tray', 'trash can', 'fan', 'plate',
  30. 'monitor', 'bulletin board', 'radiator', 'glass', 'clock', 'flag')
  31. x_decoder_ade20k_stuff_classes = (
  32. 'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'grass',
  33. 'sidewalk', 'earth', 'mountain', 'plant', 'water', 'house', 'sea', 'rug',
  34. 'field', 'rock', 'base', 'sand', 'skyscraper', 'grandstand', 'path',
  35. 'runway', 'stairway', 'river', 'bridge', 'blind', 'hill', 'bar', 'hovel',
  36. 'tower', 'dirt track', 'land', 'escalator', 'buffet', 'poster', 'stage',
  37. 'conveyer belt', 'canopy', 'pool', 'falls', 'tent', 'cradle', 'tank',
  38. 'lake', 'blanket', 'pier', 'crt screen', 'shower')
  39. val_dataloader = dict(
  40. dataset=dict(
  41. metainfo=dict(
  42. thing_classes=x_decoder_ade20k_thing_classes,
  43. stuff_classes=x_decoder_ade20k_stuff_classes),
  44. return_classes=True,
  45. pipeline=test_pipeline))
  46. test_dataloader = val_dataloader