mot_challenge_reid.py 1.8 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061
  1. # dataset settings
  2. dataset_type = 'ReIDDataset'
  3. data_root = 'data/MOT17/'
  4. backend_args = None
  5. # data pipeline
  6. train_pipeline = [
  7. dict(
  8. type='TransformBroadcaster',
  9. share_random_params=False,
  10. transforms=[
  11. dict(
  12. type='LoadImageFromFile',
  13. backend_args=backend_args,
  14. to_float32=True),
  15. dict(
  16. type='Resize',
  17. scale=(128, 256),
  18. keep_ratio=False,
  19. clip_object_border=False),
  20. dict(type='RandomFlip', prob=0.5, direction='horizontal'),
  21. ]),
  22. dict(type='PackReIDInputs', meta_keys=('flip', 'flip_direction'))
  23. ]
  24. test_pipeline = [
  25. dict(type='LoadImageFromFile', backend_args=backend_args, to_float32=True),
  26. dict(type='Resize', scale=(128, 256), keep_ratio=False),
  27. dict(type='PackReIDInputs')
  28. ]
  29. # dataloader
  30. train_dataloader = dict(
  31. batch_size=1,
  32. num_workers=2,
  33. persistent_workers=True,
  34. sampler=dict(type='DefaultSampler', shuffle=True),
  35. dataset=dict(
  36. type=dataset_type,
  37. data_root=data_root,
  38. triplet_sampler=dict(num_ids=8, ins_per_id=4),
  39. data_prefix=dict(img_path='reid/imgs'),
  40. ann_file='reid/meta/train_80.txt',
  41. pipeline=train_pipeline))
  42. val_dataloader = dict(
  43. batch_size=1,
  44. num_workers=2,
  45. persistent_workers=True,
  46. drop_last=False,
  47. sampler=dict(type='DefaultSampler', shuffle=False),
  48. dataset=dict(
  49. type=dataset_type,
  50. data_root=data_root,
  51. triplet_sampler=None,
  52. data_prefix=dict(img_path='reid/imgs'),
  53. ann_file='reid/meta/val_20.txt',
  54. pipeline=test_pipeline))
  55. test_dataloader = val_dataloader
  56. # evaluator
  57. val_evaluator = dict(type='ReIDMetrics', metric=['mAP', 'CMC'])
  58. test_evaluator = val_evaluator