cascade-mask-rcnn_r50_fpn_1x_coco_v1.py 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. _base_ = [
  2. '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
  3. '../_base_/datasets/coco_instance.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. model = dict(
  7. type='CascadeRCNN',
  8. backbone=dict(
  9. type='ResNet',
  10. depth=50,
  11. num_stages=4,
  12. out_indices=(0, 1, 2, 3),
  13. frozen_stages=1,
  14. norm_cfg=dict(type='BN', requires_grad=True),
  15. norm_eval=True,
  16. style='pytorch',
  17. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  18. neck=dict(
  19. type='FPN',
  20. in_channels=[256, 512, 1024, 2048],
  21. out_channels=256,
  22. num_outs=5),
  23. rpn_head=dict(
  24. anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5),
  25. bbox_coder=dict(
  26. type='LegacyDeltaXYWHBBoxCoder',
  27. target_means=[.0, .0, .0, .0],
  28. target_stds=[1.0, 1.0, 1.0, 1.0])),
  29. roi_head=dict(
  30. bbox_roi_extractor=dict(
  31. type='SingleRoIExtractor',
  32. roi_layer=dict(
  33. type='RoIAlign',
  34. output_size=7,
  35. sampling_ratio=2,
  36. aligned=False)),
  37. bbox_head=[
  38. dict(
  39. type='Shared2FCBBoxHead',
  40. reg_class_agnostic=True,
  41. in_channels=256,
  42. fc_out_channels=1024,
  43. roi_feat_size=7,
  44. num_classes=80,
  45. bbox_coder=dict(
  46. type='LegacyDeltaXYWHBBoxCoder',
  47. target_means=[0., 0., 0., 0.],
  48. target_stds=[0.1, 0.1, 0.2, 0.2])),
  49. dict(
  50. type='Shared2FCBBoxHead',
  51. reg_class_agnostic=True,
  52. in_channels=256,
  53. fc_out_channels=1024,
  54. roi_feat_size=7,
  55. num_classes=80,
  56. bbox_coder=dict(
  57. type='LegacyDeltaXYWHBBoxCoder',
  58. target_means=[0., 0., 0., 0.],
  59. target_stds=[0.05, 0.05, 0.1, 0.1])),
  60. dict(
  61. type='Shared2FCBBoxHead',
  62. reg_class_agnostic=True,
  63. in_channels=256,
  64. fc_out_channels=1024,
  65. roi_feat_size=7,
  66. num_classes=80,
  67. bbox_coder=dict(
  68. type='LegacyDeltaXYWHBBoxCoder',
  69. target_means=[0., 0., 0., 0.],
  70. target_stds=[0.033, 0.033, 0.067, 0.067])),
  71. ],
  72. mask_roi_extractor=dict(
  73. type='SingleRoIExtractor',
  74. roi_layer=dict(
  75. type='RoIAlign',
  76. output_size=14,
  77. sampling_ratio=2,
  78. aligned=False))))