123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- _base_ = [
- '../_base_/models/cascade-mask-rcnn_r50_fpn.py',
- '../_base_/datasets/coco_instance.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- model = dict(
- type='CascadeRCNN',
- backbone=dict(
- type='ResNet',
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- num_outs=5),
- rpn_head=dict(
- anchor_generator=dict(type='LegacyAnchorGenerator', center_offset=0.5),
- bbox_coder=dict(
- type='LegacyDeltaXYWHBBoxCoder',
- target_means=[.0, .0, .0, .0],
- target_stds=[1.0, 1.0, 1.0, 1.0])),
- roi_head=dict(
- bbox_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign',
- output_size=7,
- sampling_ratio=2,
- aligned=False)),
- bbox_head=[
- dict(
- type='Shared2FCBBoxHead',
- reg_class_agnostic=True,
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=80,
- bbox_coder=dict(
- type='LegacyDeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.1, 0.1, 0.2, 0.2])),
- dict(
- type='Shared2FCBBoxHead',
- reg_class_agnostic=True,
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=80,
- bbox_coder=dict(
- type='LegacyDeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.05, 0.05, 0.1, 0.1])),
- dict(
- type='Shared2FCBBoxHead',
- reg_class_agnostic=True,
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=80,
- bbox_coder=dict(
- type='LegacyDeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.033, 0.033, 0.067, 0.067])),
- ],
- mask_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign',
- output_size=14,
- sampling_ratio=2,
- aligned=False))))
|