faster-rcnn_r50_fpn_1x_coco_v1.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738
  1. _base_ = [
  2. '../_base_/models/faster-rcnn_r50_fpn.py',
  3. '../_base_/datasets/coco_detection.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. model = dict(
  7. type='FasterRCNN',
  8. backbone=dict(
  9. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  10. rpn_head=dict(
  11. type='RPNHead',
  12. anchor_generator=dict(
  13. type='LegacyAnchorGenerator',
  14. center_offset=0.5,
  15. scales=[8],
  16. ratios=[0.5, 1.0, 2.0],
  17. strides=[4, 8, 16, 32, 64]),
  18. bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
  19. loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
  20. roi_head=dict(
  21. type='StandardRoIHead',
  22. bbox_roi_extractor=dict(
  23. type='SingleRoIExtractor',
  24. roi_layer=dict(
  25. type='RoIAlign',
  26. output_size=7,
  27. sampling_ratio=2,
  28. aligned=False),
  29. out_channels=256,
  30. featmap_strides=[4, 8, 16, 32]),
  31. bbox_head=dict(
  32. bbox_coder=dict(type='LegacyDeltaXYWHBBoxCoder'),
  33. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
  34. # model training and testing settings
  35. train_cfg=dict(
  36. rpn_proposal=dict(max_per_img=2000),
  37. rcnn=dict(assigner=dict(match_low_quality=True))))