123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from mmcv.ops import RoIAlign, nms
- from torch.nn import BatchNorm2d
- from mmdet.models.backbones.resnet import ResNet
- from mmdet.models.data_preprocessors.data_preprocessor import \
- DetDataPreprocessor
- from mmdet.models.dense_heads.rpn_head import RPNHead
- from mmdet.models.detectors.faster_rcnn import FasterRCNN
- from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
- from mmdet.models.losses.smooth_l1_loss import L1Loss
- from mmdet.models.necks.fpn import FPN
- from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
- Shared2FCBBoxHead
- from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
- SingleRoIExtractor
- from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
- from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
- from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
- DeltaXYWHBBoxCoder
- from mmdet.models.task_modules.prior_generators.anchor_generator import \
- AnchorGenerator
- from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
- # model settings
- model = dict(
- type=FasterRCNN,
- data_preprocessor=dict(
- type=DetDataPreprocessor,
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=32),
- backbone=dict(
- type=ResNet,
- depth=50,
- num_stages=4,
- out_indices=(0, 1, 2, 3),
- frozen_stages=1,
- norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
- norm_eval=True,
- style='pytorch',
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
- neck=dict(
- type=FPN,
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- num_outs=5),
- rpn_head=dict(
- type=RPNHead,
- in_channels=256,
- feat_channels=256,
- anchor_generator=dict(
- type=AnchorGenerator,
- scales=[8],
- ratios=[0.5, 1.0, 2.0],
- strides=[4, 8, 16, 32, 64]),
- bbox_coder=dict(
- type=DeltaXYWHBBoxCoder,
- target_means=[.0, .0, .0, .0],
- target_stds=[1.0, 1.0, 1.0, 1.0]),
- loss_cls=dict(
- type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
- loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
- roi_head=dict(
- type=StandardRoIHead,
- bbox_roi_extractor=dict(
- type=SingleRoIExtractor,
- roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
- out_channels=256,
- featmap_strides=[4, 8, 16, 32]),
- bbox_head=dict(
- type=Shared2FCBBoxHead,
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=80,
- bbox_coder=dict(
- type=DeltaXYWHBBoxCoder,
- target_means=[0., 0., 0., 0.],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- reg_class_agnostic=False,
- loss_cls=dict(
- type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
- loss_bbox=dict(type=L1Loss, loss_weight=1.0))),
- # model training and testing settings
- train_cfg=dict(
- rpn=dict(
- assigner=dict(
- type=MaxIoUAssigner,
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type=RandomSampler,
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- rpn_proposal=dict(
- nms_pre=2000,
- max_per_img=1000,
- nms=dict(type=nms, iou_threshold=0.7),
- min_bbox_size=0),
- rcnn=dict(
- assigner=dict(
- type=MaxIoUAssigner,
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.5,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type=RandomSampler,
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- pos_weight=-1,
- debug=False)),
- test_cfg=dict(
- rpn=dict(
- nms_pre=1000,
- max_per_img=1000,
- nms=dict(type=nms, iou_threshold=0.7),
- min_bbox_size=0),
- rcnn=dict(
- score_thr=0.05,
- nms=dict(type=nms, iou_threshold=0.5),
- max_per_img=100)
- # soft-nms is also supported for rcnn testing
- # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
- ))
|