faster_rcnn_r50_fpn.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. # Copyright (c) OpenMMLab. All rights reserved.
  2. from mmcv.ops import RoIAlign, nms
  3. from torch.nn import BatchNorm2d
  4. from mmdet.models.backbones.resnet import ResNet
  5. from mmdet.models.data_preprocessors.data_preprocessor import \
  6. DetDataPreprocessor
  7. from mmdet.models.dense_heads.rpn_head import RPNHead
  8. from mmdet.models.detectors.faster_rcnn import FasterRCNN
  9. from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
  10. from mmdet.models.losses.smooth_l1_loss import L1Loss
  11. from mmdet.models.necks.fpn import FPN
  12. from mmdet.models.roi_heads.bbox_heads.convfc_bbox_head import \
  13. Shared2FCBBoxHead
  14. from mmdet.models.roi_heads.roi_extractors.single_level_roi_extractor import \
  15. SingleRoIExtractor
  16. from mmdet.models.roi_heads.standard_roi_head import StandardRoIHead
  17. from mmdet.models.task_modules.assigners.max_iou_assigner import MaxIoUAssigner
  18. from mmdet.models.task_modules.coders.delta_xywh_bbox_coder import \
  19. DeltaXYWHBBoxCoder
  20. from mmdet.models.task_modules.prior_generators.anchor_generator import \
  21. AnchorGenerator
  22. from mmdet.models.task_modules.samplers.random_sampler import RandomSampler
  23. # model settings
  24. model = dict(
  25. type=FasterRCNN,
  26. data_preprocessor=dict(
  27. type=DetDataPreprocessor,
  28. mean=[123.675, 116.28, 103.53],
  29. std=[58.395, 57.12, 57.375],
  30. bgr_to_rgb=True,
  31. pad_size_divisor=32),
  32. backbone=dict(
  33. type=ResNet,
  34. depth=50,
  35. num_stages=4,
  36. out_indices=(0, 1, 2, 3),
  37. frozen_stages=1,
  38. norm_cfg=dict(type=BatchNorm2d, requires_grad=True),
  39. norm_eval=True,
  40. style='pytorch',
  41. init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
  42. neck=dict(
  43. type=FPN,
  44. in_channels=[256, 512, 1024, 2048],
  45. out_channels=256,
  46. num_outs=5),
  47. rpn_head=dict(
  48. type=RPNHead,
  49. in_channels=256,
  50. feat_channels=256,
  51. anchor_generator=dict(
  52. type=AnchorGenerator,
  53. scales=[8],
  54. ratios=[0.5, 1.0, 2.0],
  55. strides=[4, 8, 16, 32, 64]),
  56. bbox_coder=dict(
  57. type=DeltaXYWHBBoxCoder,
  58. target_means=[.0, .0, .0, .0],
  59. target_stds=[1.0, 1.0, 1.0, 1.0]),
  60. loss_cls=dict(
  61. type=CrossEntropyLoss, use_sigmoid=True, loss_weight=1.0),
  62. loss_bbox=dict(type=L1Loss, loss_weight=1.0)),
  63. roi_head=dict(
  64. type=StandardRoIHead,
  65. bbox_roi_extractor=dict(
  66. type=SingleRoIExtractor,
  67. roi_layer=dict(type=RoIAlign, output_size=7, sampling_ratio=0),
  68. out_channels=256,
  69. featmap_strides=[4, 8, 16, 32]),
  70. bbox_head=dict(
  71. type=Shared2FCBBoxHead,
  72. in_channels=256,
  73. fc_out_channels=1024,
  74. roi_feat_size=7,
  75. num_classes=80,
  76. bbox_coder=dict(
  77. type=DeltaXYWHBBoxCoder,
  78. target_means=[0., 0., 0., 0.],
  79. target_stds=[0.1, 0.1, 0.2, 0.2]),
  80. reg_class_agnostic=False,
  81. loss_cls=dict(
  82. type=CrossEntropyLoss, use_sigmoid=False, loss_weight=1.0),
  83. loss_bbox=dict(type=L1Loss, loss_weight=1.0))),
  84. # model training and testing settings
  85. train_cfg=dict(
  86. rpn=dict(
  87. assigner=dict(
  88. type=MaxIoUAssigner,
  89. pos_iou_thr=0.7,
  90. neg_iou_thr=0.3,
  91. min_pos_iou=0.3,
  92. match_low_quality=True,
  93. ignore_iof_thr=-1),
  94. sampler=dict(
  95. type=RandomSampler,
  96. num=256,
  97. pos_fraction=0.5,
  98. neg_pos_ub=-1,
  99. add_gt_as_proposals=False),
  100. allowed_border=-1,
  101. pos_weight=-1,
  102. debug=False),
  103. rpn_proposal=dict(
  104. nms_pre=2000,
  105. max_per_img=1000,
  106. nms=dict(type=nms, iou_threshold=0.7),
  107. min_bbox_size=0),
  108. rcnn=dict(
  109. assigner=dict(
  110. type=MaxIoUAssigner,
  111. pos_iou_thr=0.5,
  112. neg_iou_thr=0.5,
  113. min_pos_iou=0.5,
  114. match_low_quality=False,
  115. ignore_iof_thr=-1),
  116. sampler=dict(
  117. type=RandomSampler,
  118. num=512,
  119. pos_fraction=0.25,
  120. neg_pos_ub=-1,
  121. add_gt_as_proposals=True),
  122. pos_weight=-1,
  123. debug=False)),
  124. test_cfg=dict(
  125. rpn=dict(
  126. nms_pre=1000,
  127. max_per_img=1000,
  128. nms=dict(type=nms, iou_threshold=0.7),
  129. min_bbox_size=0),
  130. rcnn=dict(
  131. score_thr=0.05,
  132. nms=dict(type=nms, iou_threshold=0.5),
  133. max_per_img=100)
  134. # soft-nms is also supported for rcnn testing
  135. # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
  136. ))